THE EFFECT OF GALEGA OFFICINALIS L. EXTRACT ON THE CONTENT OF THE ADVANCED GLYCATION END PRODUCTS AND THEIR RECEPTORS IN RAT LEUKOCYTES UNDER EXPERIMENTAL DIABETES MELLITUS

Kh. Ye. Furtak, H. Ya. Hachkova, N. O. Sybirna


DOI: http://dx.doi.org/10.30970/sbi.1504.672

Abstract


Background. Diabetes mellitus intensifies non-enzymatic glycosylation (glycation) of biomolecules under conditions of chronic hyperglycemia and facilitates accumulation of advanced glycation end products. Disorders of the cells of various tissues are caused by binding of advanced glycation end products to the corresponding receptors, the level of receptors for advanced glycation end products increases under conditions of hyperglycemia. The interaction between receptors for advanced glycation end products and advanced glycation end products leads to the formation of excessive reactive oxygen species, changes in intracellular signaling, gene expression, increased secretion of pro-inflammatory cytokines and contributes to the development of diabetic complications. The search for factors of natural origin that will slow down the development of specific complications of diabetes, determines the feasibility of studies of the corrective ability of biologically active substances isolated from medicinal plants for the process of glycation of proteins in diabetes.
Materials and methods. Experimental diabetes mellitus was induced by intraperitoneal administration of streptozotocin. Separation of blood leukocytes was performed in Ficoll density gradient. To determine the extent of advanced glycation end products and receptor for advanced glycation end products in leukocyte immunoperoxidase labeling was performed.
Results. A decrease in the content of advanced glycation end products in leukocy­tes under conditions of experimental diabetes mellitus was found. The obtained data indicate a possible contravention of glucose uptake by leukocytes in the studied pathology. At the same time, an increase in exposure to the receptor for advanced glycation end products leukocyte membranes in response to chronic hyperglycemia has been demonstrated. The ability of alkaloid free fraction of Galega officinalis extract to reduce the content of receptors for end products of glycation on the membranes of immunocompetent cells in diabetic animals has been confirmed, which may be due to the presence of biologically active substances with hypoglycemic action in its composition.
Conclusion. Corrective effect of alkaloid free fraction of Galega officinalis L. extract on the content of receptor for advanced glycation end products in diabetes mellitus is mediated by its normalizing effect on carbohydrate metabolism.


Keywords


diabetes mellitus, Galega officinalis L., advanced glycation end products (AGEs), receptor for advanced glycation end products (RAGE), leukocytes

Full Text:

PDF

References


Ahmed, R. G. (2005). The physiological and biochemical effect of diabetes on the balance between oxidative stress and antioxidant defense system. Medical Journal of Islamic World Academy of Sciences, 15(1), 31-42.
Google Scholar

Byun, K., Yoo, Y., Son, M., Lee, J., Jeong, G. B., Park, Y. M., Salekdeh, G. H., & Lee, B. (2017). Advanced glycation end-products produced systemically and by macrophages: A common contributor to inflammation and degenerative diseases. Pharmacology & Therapeutics, 177, 44-55. doi:10.1016/j.pharmthera.2017.02.030
CrossrefPubMedGoogle Scholar

Cho, S.-J., Roman, G., Yeboah, F., & Konishi, Y. (2007). The road to advanced glycation end products: a mechanistic perspective. Current Medicinal Chemistry, 14(15), 1653-1671. doi:10.2174/092986707780830989
CrossrefPubMedGoogle Scholar

Hachkova, H., Nagalievska, M., Soliljak, Z., Kanyuka, O., Kucharska, A. Z., Sokół-Łętowska, A., Belonovskaya, E., Buko, V., & Sybirna, N. (2021). Medicinal plants Galega officinalis L. and yacon leaves as potential sources of antidiabetic drugs. Antioxidants, 10(9), 1362. doi:10.3390/antiox10091362
CrossrefPubMedPMCGoogle Scholar

Hawkins, C. L., & Davies, M. J. (2019). Detection, identification, and quantification of oxidative protein modifications. Journal of Biological Chemistry, 294(51), 19683-19708. doi:10.1074/jbc.rev119.006217
CrossrefPubMedPMCGoogle Scholar

Ighodaro, O. M. (2018). Molecular pathways associated with oxidative stress in diabetes mellitus. Biomedicine & Pharmacotherapy, 108, 656-662. doi:10.1016/j.biopha.2018.09.058
CrossrefPubMedGoogle Scholar

Jasmin, S., Ali, M., Ferdous, M., Arslan, M. I., & Biswas, S. K. (2019). Glucose transporter 4 gene expression in peripheral blood leukocytes in type 2 diabetes mellitus. Bangabandhu Sheikh Mujib Medical University Journal, 12(1), 19-24. doi:10.3329/bsmmuj.v12i1.40467
CrossrefGoogle Scholar

Jud, P., & Sourij, H. (2019). Therapeutic options to reduce advanced glycation end products in patients with diabetes mellitus: A review. Diabetes Research and Clinical Practice, 148, 54-63. doi:10.1016/j.diabres.2018.11.016
CrossrefPubMedGoogle Scholar

Kang, Q., & Yang, C. (2020). Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biology, 37, 101799. doi:10.1016/j.redox.2020.101799
CrossrefPubMedPMCGoogle Scholar

Khokhla, M., Kleveta, G., Lupak, M., Kanyuka, O. P., Chajka, Ya., Skybitska, M., & Sybirna, N. (2013). Doslidzhennia komponentnoho skladu ekstraktu kozliatnyka likarskoho [Studies of Galega officinalis L. extract component]. Visnyk of Lviv University. Biological series, 62, 55-60. [In Ukrainian]
Google Scholar

Khokhla, M., Kleveta, G., Kotyk, A., Skybitska, M., Chajka, Y., & Sybirna, N. O. (2010). Sugar-lowering effects of Galega officinalis L. Annales Universitatis Mariae Curie-Skłodowska. Sectio DDD, Pharmacia, 23(4), 177-182.
Google Scholar

Kleveta, G. Ya., Kotyk, A. M., Skybitska, M. I., Khokhla, M. R., Chajka, Ya. P., & Sybirna, N. O. (2009). Tsukroznyzhuvalnyi efekt ekstraktiv halehy likarskoi (Galega officinalis L.) za umov eksperymentalnoho tsukrovoho diabetu [Hypoglycemic effect of Galega officinalis L. extracts at experimental diabetes mellitus]. Studia Biologica, 3(2), 59-64. doi:10.30970/sbi.0302.029 [In Ukrainian]
CrossrefGoogle Scholar

Lapovets, L. Ye., Lutsyk, B. D. (2004). Laboratorna imunolohia [Manual of Laboratory Immuno­logy], Kyiv: Aral. [In Ukrainian]
Google Scholar

Lupak, M. I., Khokhla, M. R., Hachkova, G. Ya., Kanuka, O. P., Klymyshyn, N. I., Chaika, Ya. P., Skybitska, M. I., & Sybirna, N. O. (2015). Bezalkaloidna fraktsiia ekstraktu kozliatnyka likarskoho (Galega officinalis L.) poperedzhaie oksydatyvnyi stres v umovakh eksperymentalnoho tsukrovoho diabetu [The alkaloid-free fraction from Galega officinalis extract prevents oxidative stress under experimental diabetes mellitus]. The Ukrainian Biochemical Journal, 87(4), 78-86. doi:10.15407/ubj87.04.078 [In Ukrainian]
CrossrefPubMedGoogle Scholar

Maratou, E., Dimitriadis, G., Kollias, A., Boutati, E., Lambadiari, V., Mitrou, P., & Raptis, S. A. (2007). Glucose transporter expression on the plasma membrane of resting and activated white blood cells. European Journal of Clinical Investigation, 37(4), 282-290. doi:10.1111/j.1365-2362.2007.01786.x
CrossrefPubMedGoogle Scholar

Ojima, A., Matsui, T., Maeda, S., Takeuchi, M., & Yamagishi, S. (2012). Glucose-dependent insulinotropic polypeptide (GIP) inhibits signaling pathways of advanced glycation end products (AGEs) in endothelial cells via its antioxidative properties. Hormone and Metabolic Research, 44(07), 501-505. doi:10.1055/s-0032-1312595
CrossrefPubMedGoogle Scholar

Peng, X., Ma, J., Chen, F., & Wang, M. (2011). Naturally occurring inhibitors against the formation of advanced glycation end-products. Food & Function, 2(6), 289. doi:10.1039/c1fo10034c
CrossrefPubMedGoogle Scholar

Ruiz, H. H., Ramasamy, R., & Schmidt, A. M. (2019). Advanced glycation end products: building on the concept of the "common soil" in metabolic disease. Endocrinology, 161(1). doi:10.1210/endocr/bqz006
CrossrefPubMedPMCGoogle Scholar

Sybirna, N., Vil’danova, R., Shul’ha, O., Shchehlova, N., Karpenko, O., Khokhla, M., Hachkova, H., & Lupak, M. (2015). Sposib otrymannia phitopreparatu na osnovi bezalkaloidnoi fraktsii ekstraktu kozliatnyka likarskoho (Galega officinalis L.) [The method of phytodrug producing on the alkaloid-free fraction of Galega officinalis extract]. Patent UA No 101202. Kyiv: Ukrainian Patents Database. [In Ukrainian]

Tezel, G., Luo, C., & Yang, X. (2007). Accelerated aging in glaucoma: immunohistochemical assessment of advanced glycation end products in the human retina and optic nerve head. Investigative Opthalmology & Visual Science, 48(3), 1201. doi:10.1167/iovs.06-0737
CrossrefPubMedPMCGoogle Scholar

Wautier, M.-P., Chappey, O., Corda, S., Stern, D. M., Schmidt, A. M., & Wautier, J.-L. (2001). Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. American Journal of Physiology-Endocrinology and Metabolism, 280(5), E685-E694. doi:10.1152/ajpendo.2001.280.5.e685
CrossrefPubMedGoogle Scholar

Yamagishi, S. (2011). Role of advanced glycation end products (AGEs) and receptor for AGEs (RAGE) in vascular damage in diabetes. Experimental Gerontology, 46(4), 217-224. doi:10.1016/j.exger.2010.11.007
CrossrefPubMedGoogle Scholar

Yan, S. D., Schmidt, A. M., Anderson, G. M., Zhang, J., Brett, J., Zou, Y. S., Pinsky, D., & Stern, D. (1994). Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins. Journal of Biological Chemistry, 269(13), 9889-9897. doi:10.1016/s0021-9258(17)36966-1
CrossrefGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Kh. Ye. Furtak, H. Ya. Hachkova, N. O. Sybirna

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.