THE EFFECT OF GALEGA OFFICINALIS L. EXTRACT ON THE CONTENT OF THE ADVANCED GLYCATION END PRODUCTS AND THEIR RECEPTORS IN RAT LEUKOCYTES UNDER EXPERIMENTAL DIABETES MELLITUS
DOI: http://dx.doi.org/10.30970/sbi.1504.672
Abstract
Background. Diabetes mellitus intensifies non-enzymatic glycosylation (glycation) of biomolecules under conditions of chronic hyperglycemia and facilitates accumulation of advanced glycation end products. Disorders of the cells of various tissues are caused by binding of advanced glycation end products to the corresponding receptors, the level of receptors for advanced glycation end products increases under conditions of hyperglycemia. The interaction between receptors for advanced glycation end products and advanced glycation end products leads to the formation of excessive reactive oxygen species, changes in intracellular signaling, gene expression, increased secretion of pro-inflammatory cytokines and contributes to the development of diabetic complications. The search for factors of natural origin that will slow down the development of specific complications of diabetes, determines the feasibility of studies of the corrective ability of biologically active substances isolated from medicinal plants for the process of glycation of proteins in diabetes.
Materials and methods. Experimental diabetes mellitus was induced by intraperitoneal administration of streptozotocin. Separation of blood leukocytes was performed in Ficoll density gradient. To determine the extent of advanced glycation end products and receptor for advanced glycation end products in leukocyte immunoperoxidase labeling was performed.
Results. A decrease in the content of advanced glycation end products in leukocytes under conditions of experimental diabetes mellitus was found. The obtained data indicate a possible contravention of glucose uptake by leukocytes in the studied pathology. At the same time, an increase in exposure to the receptor for advanced glycation end products leukocyte membranes in response to chronic hyperglycemia has been demonstrated. The ability of alkaloid free fraction of Galega officinalis extract to reduce the content of receptors for end products of glycation on the membranes of immunocompetent cells in diabetic animals has been confirmed, which may be due to the presence of biologically active substances with hypoglycemic action in its composition.
Conclusion. Corrective effect of alkaloid free fraction of Galega officinalis L. extract on the content of receptor for advanced glycation end products in diabetes mellitus is mediated by its normalizing effect on carbohydrate metabolism.
Keywords
Full Text:
PDFReferences
Ahmed, R. G. (2005). The physiological and biochemical effect of diabetes on the balance between oxidative stress and antioxidant defense system. Medical Journal of Islamic World Academy of Sciences, 15(1), 31-42. Google Scholar | ||||
| ||||
Byun, K., Yoo, Y., Son, M., Lee, J., Jeong, G. B., Park, Y. M., Salekdeh, G. H., & Lee, B. (2017). Advanced glycation end-products produced systemically and by macrophages: A common contributor to inflammation and degenerative diseases. Pharmacology & Therapeutics, 177, 44-55. doi:10.1016/j.pharmthera.2017.02.030 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Cho, S.-J., Roman, G., Yeboah, F., & Konishi, Y. (2007). The road to advanced glycation end products: a mechanistic perspective. Current Medicinal Chemistry, 14(15), 1653-1671. doi:10.2174/092986707780830989 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Hachkova, H., Nagalievska, M., Soliljak, Z., Kanyuka, O., Kucharska, A. Z., Sokół-Łętowska, A., Belonovskaya, E., Buko, V., & Sybirna, N. (2021). Medicinal plants Galega officinalis L. and yacon leaves as potential sources of antidiabetic drugs. Antioxidants, 10(9), 1362. doi:10.3390/antiox10091362 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Hawkins, C. L., & Davies, M. J. (2019). Detection, identification, and quantification of oxidative protein modifications. Journal of Biological Chemistry, 294(51), 19683-19708. doi:10.1074/jbc.rev119.006217 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Ighodaro, O. M. (2018). Molecular pathways associated with oxidative stress in diabetes mellitus. Biomedicine & Pharmacotherapy, 108, 656-662. doi:10.1016/j.biopha.2018.09.058 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Jasmin, S., Ali, M., Ferdous, M., Arslan, M. I., & Biswas, S. K. (2019). Glucose transporter 4 gene expression in peripheral blood leukocytes in type 2 diabetes mellitus. Bangabandhu Sheikh Mujib Medical University Journal, 12(1), 19-24. doi:10.3329/bsmmuj.v12i1.40467 Crossref ● Google Scholar | ||||
| ||||
Jud, P., & Sourij, H. (2019). Therapeutic options to reduce advanced glycation end products in patients with diabetes mellitus: A review. Diabetes Research and Clinical Practice, 148, 54-63. doi:10.1016/j.diabres.2018.11.016 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Kang, Q., & Yang, C. (2020). Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biology, 37, 101799. doi:10.1016/j.redox.2020.101799 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Khokhla, M., Kleveta, G., Lupak, M., Kanyuka, O. P., Chajka, Ya., Skybitska, M., & Sybirna, N. (2013). Doslidzhennia komponentnoho skladu ekstraktu kozliatnyka likarskoho [Studies of Galega officinalis L. extract component]. Visnyk of Lviv University. Biological series, 62, 55-60. [In Ukrainian] Google Scholar | ||||
| ||||
Khokhla, M., Kleveta, G., Kotyk, A., Skybitska, M., Chajka, Y., & Sybirna, N. O. (2010). Sugar-lowering effects of Galega officinalis L. Annales Universitatis Mariae Curie-Skłodowska. Sectio DDD, Pharmacia, 23(4), 177-182. Google Scholar | ||||
| ||||
Kleveta, G. Ya., Kotyk, A. M., Skybitska, M. I., Khokhla, M. R., Chajka, Ya. P., & Sybirna, N. O. (2009). Tsukroznyzhuvalnyi efekt ekstraktiv halehy likarskoi (Galega officinalis L.) za umov eksperymentalnoho tsukrovoho diabetu [Hypoglycemic effect of Galega officinalis L. extracts at experimental diabetes mellitus]. Studia Biologica, 3(2), 59-64. doi:10.30970/sbi.0302.029 [In Ukrainian] Crossref ● Google Scholar | ||||
| ||||
Lapovets, L. Ye., Lutsyk, B. D. (2004). Laboratorna imunolohia [Manual of Laboratory Immunology], Kyiv: Aral. [In Ukrainian] Google Scholar | ||||
| ||||
Lupak, M. I., Khokhla, M. R., Hachkova, G. Ya., Kanuka, O. P., Klymyshyn, N. I., Chaika, Ya. P., Skybitska, M. I., & Sybirna, N. O. (2015). Bezalkaloidna fraktsiia ekstraktu kozliatnyka likarskoho (Galega officinalis L.) poperedzhaie oksydatyvnyi stres v umovakh eksperymentalnoho tsukrovoho diabetu [The alkaloid-free fraction from Galega officinalis extract prevents oxidative stress under experimental diabetes mellitus]. The Ukrainian Biochemical Journal, 87(4), 78-86. doi:10.15407/ubj87.04.078 [In Ukrainian] Crossref ● PubMed ● Google Scholar | ||||
| ||||
Maratou, E., Dimitriadis, G., Kollias, A., Boutati, E., Lambadiari, V., Mitrou, P., & Raptis, S. A. (2007). Glucose transporter expression on the plasma membrane of resting and activated white blood cells. European Journal of Clinical Investigation, 37(4), 282-290. doi:10.1111/j.1365-2362.2007.01786.x Crossref ● PubMed ● Google Scholar | ||||
| ||||
Ojima, A., Matsui, T., Maeda, S., Takeuchi, M., & Yamagishi, S. (2012). Glucose-dependent insulinotropic polypeptide (GIP) inhibits signaling pathways of advanced glycation end products (AGEs) in endothelial cells via its antioxidative properties. Hormone and Metabolic Research, 44(07), 501-505. doi:10.1055/s-0032-1312595 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Peng, X., Ma, J., Chen, F., & Wang, M. (2011). Naturally occurring inhibitors against the formation of advanced glycation end-products. Food & Function, 2(6), 289. doi:10.1039/c1fo10034c Crossref ● PubMed ● Google Scholar | ||||
| ||||
Ruiz, H. H., Ramasamy, R., & Schmidt, A. M. (2019). Advanced glycation end products: building on the concept of the "common soil" in metabolic disease. Endocrinology, 161(1). doi:10.1210/endocr/bqz006 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Sybirna, N., Vil’danova, R., Shul’ha, O., Shchehlova, N., Karpenko, O., Khokhla, M., Hachkova, H., & Lupak, M. (2015). Sposib otrymannia phitopreparatu na osnovi bezalkaloidnoi fraktsii ekstraktu kozliatnyka likarskoho (Galega officinalis L.) [The method of phytodrug producing on the alkaloid-free fraction of Galega officinalis extract]. Patent UA No 101202. Kyiv: Ukrainian Patents Database. [In Ukrainian] | ||||
| ||||
Tezel, G., Luo, C., & Yang, X. (2007). Accelerated aging in glaucoma: immunohistochemical assessment of advanced glycation end products in the human retina and optic nerve head. Investigative Opthalmology & Visual Science, 48(3), 1201. doi:10.1167/iovs.06-0737 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Wautier, M.-P., Chappey, O., Corda, S., Stern, D. M., Schmidt, A. M., & Wautier, J.-L. (2001). Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. American Journal of Physiology-Endocrinology and Metabolism, 280(5), E685-E694. doi:10.1152/ajpendo.2001.280.5.e685 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Yamagishi, S. (2011). Role of advanced glycation end products (AGEs) and receptor for AGEs (RAGE) in vascular damage in diabetes. Experimental Gerontology, 46(4), 217-224. doi:10.1016/j.exger.2010.11.007 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Yan, S. D., Schmidt, A. M., Anderson, G. M., Zhang, J., Brett, J., Zou, Y. S., Pinsky, D., & Stern, D. (1994). Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins. Journal of Biological Chemistry, 269(13), 9889-9897. doi:10.1016/s0021-9258(17)36966-1 Crossref ● Google Scholar |
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Kh. Ye. Furtak, H. Ya. Hachkova, N. O. Sybirna
This work is licensed under a Creative Commons Attribution 4.0 International License.