EFFECT OF PHOTOBIOMODULATION THERAPY ON THE REGULATION OF GLUCOSE UPTAKE BY LYMPHOCYTES IN DIABETES MELLITUS (REVIEW)
DOI: http://dx.doi.org/10.30970/sbi.1504.671
Abstract
For most cells, including lymphocytes, glucose is a primary energy source, and, therefore, it is vital to understand the regulatory mechanisms that control the work of glucose transporters. Lymphocytes are pivotal for mediation of immune and inflammatory responses. A feature of lymphocytes is increasing glucose utilization during activation of the immune function, which is strongly dependent on glucose uptake. Some studies show that elevated glucose concentration in diabetes mellitus affects lymphocytes’ glucose transporters expression, which correlates with impaired immune functions and may become one of the predisposing factors of contracting infectious diseases. Recent studies have focused on glucose transporters as therapeutic targets for a variety of diseases, including diabetes mellitus. This review demonstrates the effect of photobiomodulation therapy on glucose uptake by Na+-coupled glucose carrier SGLT1 and facilitated diffusion glucose carriers of the GLUT family (GLUT1, GLUT3, GLUT4) in normal and diabetic lymphocytes.
Keywords
Full Text:
PDFReferences
Ahmadi, H., Amini, A., Fadaei Fathabady, F., Mostafavinia, A., Zare, F., Ebrahimpour-Malekshah, R., Ghalibaf, M. N., Abrisham, M., Rezaei F., Albright, R., Ghoreishi, S. K., Chien, S., & Bayat, M. (2020) Transplantation of photobiomodulation-preconditioned diabetic stem cells accelerates ischemic wound healing in diabetic rats. Stem Cell Research & Therapy, 11(1), 494. doi:10.1186/s13287-020-01967-2 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Alexandria, F. E. D., de Silva, N. C., Maia Filho, A. L. M., Assis, L., & Tim, C. R. (2020) Wound healing in diabetic: a review of photobiomodulation therapy applications. Research, Society and Development, 9(10), e259108310. doi:10.33448/rsd-v9i10.8310 Crossref ● Google Scholar | ||||
| ||||
Ancey, P. B., Contat, C., & Meylan, E. (2018). Glucose transporters in cancer - from tumor cells to the tumor microenvironment. FEBS Journal, 285(16), 2926-2943. doi:10.1111/febs.14577 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Arumugham, V. B. & Baldari, C. T. (2017). cAMP: a multifaceted modulator of immune synapse assembly and T cell activation. Journal of Leukocyte Biology, 101(6), 1301-1316. doi:10.1189/jlb.2RU1116-474R Crossref ● PubMed ● Google Scholar | ||||
| ||||
Avanzato, D., Pupo, E., Ducano, N., Isella, C., Bertalot, G., Luise, C., Pece, S., Bruna, A., Rueda, O. M., Caldas, C., Di Fiore, P. P., Sapino, A., & Lanzetti, L. (2018). High USP6NL levels in breast cancer sustain chronic AKT phosphorylation and GLUT1 stability fueling aerobic glycolysis. Cancer Research, 78(13), 3432-3444. doi:10.1158/0008-5472.CAN-17-3018 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Berry, C. T., May, M. J., & Freedman, B. D. (2018). STIM- and Orai-mediated calcium entry controls NF-κB activity and function in lymphocytes. Cell Calcium, 74, 131-143. doi:10.1016/j.ceca.2018.07.003 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Bhavsar, S. K., Singh, Y., Sharma, P., Khairnar, V., Hosseinzadeh, Z., Zhang, S., Palmada, M., Sabolic, I., Koepsell, H., Lang, K. S., Lang, P. A., & Lang, F. (2016). Expression of JAK3 sensitive Na+ coupled glucose carrier SGLT1 in activated cytotoxic T lymphocytes. Cellular Physiology and Biochemistry, 39(3), 1209-1228. doi:10.1159/000447827 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Bruce, J. I. E. (2018). Metabolic regulation of the PMCA: Role in cell death and survival. Cell Calcium, 69, 28-36. doi:10.1016/j.ceca.2017.06.001 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Byrne, F. L., Olzomer, E. M., Brink, R., & Hoehn, K. L. (2018). Knockout of glucose transporter GLUT6 has minimal effects on whole body metabolic physiology in mice. American Journal of Physiology-Endocrinology and Metabolism, 315(2), E286-E293. doi:10.1152/ajpendo.00082.2018 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Chan, O, Burke, J. D., Gao, D. F., & Fish, E. N. (2012). The chemokine CCL5 regulates glucose uptake and AMP kinase signaling in activated T cells to facilitate chemotaxis. Journal of Biological Chemistry, 287(35), 29406-16. doi:10.1074/jbc.M112.348946 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Chen, H., Tu, M., Shi, J., Wang, Y., Hou, Z., & Wang, J. (2021). Effect of photobiomodulation on CCC-ESF reactive oxygen species steady-state in high glucose mediums. Lasers in Medical Science, 36(3), 555-562. doi:10.1007/s10103-020-03057-4 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Clement, D., Goodridge, J. P., Grimm, C., Patel, S., & Malmberg, K. J. (2020). TRP channels as interior designers: remodeling the endolysosomal compartment in natural killer cells. Frontiers in Immunology, 11, 753. doi:10.3389/fimmu.2020.00753 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Colombo, E., Signore, A., Aicardi, S., Zekiy, A., Utyuzh, A., Benedicenti, S., & Amaroli, A. (2021). Experimental and clinical applications of red and near-infrared photobiomodulation on endothelial dysfunction: A review. Biomedicines, 9(3), 274. doi:10.3390/biomedicines9030274 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Coulson, D. J., Bakhashab, S., Latief, J. S., & Weaver, J. U. (2021). MiR-126, IL-7, CXCR1/2 receptors, inflammation and circulating endothelial progenitor cells: The study on targets for treatment pathways in a model of subclinical cardiovascular disease (type 1 diabetes mellitus). Journal of Translational Medicine, 19(1), 140. doi:10.1186/s12967-021-02785-7 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Dai, H. & Thomson, A. W. (2019). The "other" mTOR complex: New insights into mTORC2 immunobiology and their implications. American Journal of Transplantation, 19(6), 1614-1621. doi:10.1111/ajt.15320 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Daryabor, G., Atashzar, M. R., Kabelitz, D., Meri, S., & Kalantar, K. (2020). The effects of type 2 diabetes mellitus on organ metabolism and the immune system. Frontiers in Immunology, 11, 1582. doi:10.3389/fimmu.2020.01582 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
De Barrios, O., Meler, A., & Parra, M. (2020). MYC's fine line between B cell development and malignancy. Cells, 9(2), 523. doi:10.3390/cells9020523 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
De Freitas, L. F. & Hamblin, M. R. (2016). Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE Journal of Selected Topics in Quantum Electronics, 22(3), 7000417. doi:10.1109/JSTQE.2016.2561201 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Di Dedda, C., Vignali, D., Piemonti, L., & Monti, P. (2019). Pharmacological targeting of GLUT1 to control autoreactive T cell responses. International Journal of Molecular Sciences, 20(19), 4962. doi:10.3390/ijms20194962 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Dou, M., Ma, Y., Ma, A. G., Han, L., Song, M. M., Wang, Y. G., Yao, M. X., Sun, X. F., Li, Y., Gao, S., & Zhang, Y. (2016). Combined chromium and magnesium decreases insulin resistance more effectively than either alone. Asia Pacific Journal of Clinical Nutrition, 25(4), 747-753. doi:10.6133/apjcn.092015.48 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Gong, L., Zou, Z., Liu, L., Guo, S., & Xin, D. (2021). Photobiomodulation therapy ameliorates hyperglycemia and insulin resistance by activating cytochrome c oxidase-mediated protein kinase B in muscle. Aging (Albany NY), 13(7), 10015-10033. doi:10.18632/aging.202760 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
González-García, S., García-Peydró, M., Alcain, J., & Toribio, M. L. (2012). Notch1 and IL-7 receptor signalling in early T-cell development and leukaemia. Current Topics in Microbiology and Immunology, 360, 47-73. doi:10.1007/82_2012_231 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Gopalakrishnan, S., Mehrvar, S., Maleki, S., Schmitt, H., Summerfelt, P., Dubis, A. M., Abroe, B., Connor, T. B. Jr., Carroll, J., Huddleston, W., Ranji, M., & Eells, J. T. (2020). Photobiomodulation preserves mitochondrial redox state and is retinoprotective in a rodent model of retinitis pigmentosa. Scientific Reports, 10(1), 20382. doi:10.1038/s41598-020-77290-w Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Guo, S., Gong, L., Shen, Q., & Xing, D. (2020). Photobiomodulation reduces hepatic lipogenesis and enhances insulin sensitivity through activation of CaMKKβ/AMPK signaling pathway. Journal of Photochemistry and Photobiology B, 213, 112075. doi:10.1016/j.jphotobiol.2020.112075 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Hamblin, M. R. (2017). Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophysics, 4(3), 337-361. doi:10.3934/biophy.2017.3.337 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Hamblin, M. R. (2018). Mechanisms and mitochondrial redox signaling in photobiomodulation. Photochemistry and Photobiology, 94(2), 199-212. doi:10.1111/php.12864 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Hogan, P. G., Chen, L., Nardone, J., & Rao, A. (2003). Transcriptional regulation by calcium, calcineurin, and NFAT. Genes & Development, 17(18), 2205-32. doi:10.1101/gad.1102703 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Houreld, N. N. (2019). Healing effects of photobiomodulation on diabetic wounds. Applied Sciences, 9(23), 5114. doi:10.3390/app9235114 Crossref ● Google Scholar | ||||
| ||||
Jere, S. W., Houreld, N. N., & Abrahamse, H. (2019). Role of the PI3K/AKT (mTOR and GSK3β) signalling pathway and photobiomodulation in diabetic wound healing. Cytokine & Growth Factor Reviews, 50, 52-59. doi:10.1016/j.cytogfr.2019.03.001 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Jere, S. W., Houreld, N. N., & Abrahamse, H. (2020). Photobiomodulation and the expression of genes related to the JAK/STAT signalling pathway in wounded and diabetic wounded cells. Journal of Photochemistry and Photobiology B, 204, 111791. doi:10.1016/j.jphotobiol.2020.111791 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Jere, S. W., Houreld, N. N., & Abrahamse, H. (2021). Effect of photobiomodulation on cellular migration and survival in diabetic and hypoxic diabetic wounded fibroblast cells. Lasers in Medical Science. 2021, 36(2), 365-374. doi:10.1007/s10103-020-03041-y Crossref ● PubMed ● Google Scholar | ||||
| ||||
Kaiser, M., Wiggin, G. R., Lightfoot, K., Arthur, J. S., & Macdonald, A. (2007). MSK regulate TCR-induced CREB phosphorylation but not immediate early gene transcription. European Journal of Immunology, 37(9), 2583-95. doi:10.1002/eji.200636606 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Karkada, G., Maiya, G. A., Arany, P., Rao, M., Adiga, S., & Kamath, S. U. (2021). Effect of photobiomodulation therapy on oxidative stress markers in healing dynamics of diabetic neuropathic wounds in Wistar rats. Cell Biochemistry and Biophysics. doi:10.1007/s12013-021-01021-9 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Karmash, O. I., Liuta, M. Ya., Korobov, A. M., & Sybirna N. O. (2020). The effect of photobiomodulation therapy on oxidative stress progressing in blood leukocytes of streptozotocin-induced diabetic rats. Cytology and Genetics, 54(5), 97-107. doi:10.3103/S0095452720050114 [In Ukrainian] Crossref ● Google Scholar | ||||
| ||||
Karmash, O. I., Liuta, M. Ya., Yefimenko N. V., & Sybirna N. O. (2021) The effect of photobiomodulation therapy on some indices of rats' blood cells functional state under experimental diabetes mellitus. Studia Biologica, 15(3), 3-16. doi:10.30970/sbi.1503.659 Crossref ● Google Scholar | ||||
| ||||
Kavanagh, W. M, Coombes, N., Juszczak, F., Athanasopoulos, M., Khan, M. B., Eykyn, T. R., Srenathan, U., Taams, L. S., Dias, Z. J., Da Poian, A. T., & Huthoff, H. (2018). Upregulation of glucose uptake and hexokinase activity of primary human CD4+ T cells in response to infection with HIV-1. Viruses, 10(3), 114. doi:10.3390/v10030114 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Kawauchi, K., Araki, K., Tobiume, K., & Tanaka, N. (2008). p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation. Nature Cell Biology, 10(5), 611-8. doi:10.1038/ncb1724 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Kazyken, D., Lentz, S. I., & Fingar, D. C. (2021). Alkaline intracellular pH (pHi) activates AMPK-mTORC2 signaling to promote cell survival during growth factor limitation. Journal of Biological Chemistry, 297(4), 101100. doi:10.1016/j.jbc.2021.101100 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Kazyken, D., Magnuson, B., Bodur, C., Acosta-Jaquez, H. A., Zhang, D., Tong, X., Barnes, T. M., Steinl, G. K., Patterson, N. E., Altheim, C. H., Sharma, N., Inoki, K., Cartee, G. D., Bridges, D., Yin, L., Riddle, S. M., & Fingar, D. C. (2019). AMPK directly activates mTORC2 to promote cell survival during acute energetic stress. Science Signaling, 12(585), eaav3249. doi:10.1126/scisignal.aav3249 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Kipmen-Korgun, D., Bilmen-Sarıkçıoğlu, S., Altunbas, H., Demir, R., & Korgun, E. T. (2009). Type-2 diabetes down-regulates glucose transporter proteins and genes of the human blood leukocytes. Scandinavian Journal of Clinical and Laboratory Investigation, 69(3), 350-358. doi:10.1080/00365510802632163 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Koepsell, H. & Vallon, V. (2020). A special issue on glucose transporters in health and disease. Pflügers Archiv, 472(9), 1107-1109. doi:10.1007/s00424-020-02442-w Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Koepsell, H. (2017). The Na+-D-glucose cotransporters SGLT1 and SGLT2 are targets for the treatment of diabetes and cancer. Pharmacology & Therapeutics, 170, 148-165. doi:10.1016/j.pharmthera.2016.10.017 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Koepsell, H. (2020). Glucose transporters in the small intestine in health and disease. Pflügers Archiv, 472(9), 1207-1248. doi:10.1007/s00424-020-02439-5 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Kress, T. R., Sabò, A., & Amati, B. (2015). MYC: connecting selective transcriptional control to global RNA production. Nature Reviews Cancer, 15(10), 593-607. doi:10.1038/nrc3984 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Lang, F., Singh, Y., Salker, M. S., Ma, K., Pandyra, A. A., Lang, P. A., & Lang, K. S. (2020). Glucose transport in lymphocytes. Pflügers Archiv, 472(9), 1401-1406. doi:10.1007/s00424-020-02416-y Crossref ● PubMed ● Google Scholar | ||||
| ||||
Liebert, A., Krause, A., Goonetilleke, N., Bicknell, B., & Kiat, H. (2017). A role for photobiomodulation in the prevention of myocardial ischemic reperfusion injury: A systematic review and potential molecular mechanisms. Scientific Reports, 7, 42386. doi:10.1038/srep42386 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Maedera, S., Mizuno, T., Ishiguro, H., Ito, T., Soga, T., & Kusuhara, H. (2019). GLUT6 is a lysosomal transporter that is regulated by inflammatory stimuli and modulates glycolysis in macrophages. FEBS Letters, 593(2), 195-208. doi:10.1002/1873-3468.13298 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Marks, R. (2021). Photobiomodulation: a potential adjunctive obesity intervention a review. Advances in Obesity, Weight Management & Control, 11(4), 135-139. doi:10.15406/aowmc.2021.11.00347 Crossref ● Google Scholar | ||||
| ||||
Martínez-Limón, A., Joaquin, M., Caballero, M., Posas, F., & de Nadal, E. (2020). The p38 pathway: from biology to cancer therapy. International Journal of Molecular Sciences, 21(6), 1913. doi:10.3390/ijms21061913 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Mehrvar, S., Mostaghimi, S., Foomani, F. H., Abroe, B., Eells, J. T., Gopalakrishnan, S., & Ranji, M. (2021). 670 nm photobiomodulation improves the mitochondrial redox state of diabetic wounds. Quantitative Imaging in Medicine and Surgery, 11(1), 107-118. doi:10.21037/qims-20-522 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Mokoena, D. R., Houreld, N. N., Dhilip Kumar, S. S., & Abrahamse, H. (2020). Photobiomodulation at 660 nm stimulates fibroblast differentiation. Lasers in Surgery and Medicine, 52(7), 671-681. doi:10.1002/lsm.23204 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Moradi, A., Zare, F., Mostafavinia, A., Safaju, S., Shahbazi, A., Habibi, M., Abdollahifar, M. A., Hashemi, S. M., Amini, A., Ghoreishi, S. K., Chien, S., Hamblin, M. R., Kouhkheil, R., & Bayat, M. (2020). Photobiomodulation plus adipose-derived stem cells improve healing of ischemic infected wounds in type 2 diabetic rats. Scientific Reports, 10(1), 1206. doi:10.1038/s41598-020-58099-z Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Mussttaf, R. A., Jenkins, D. F. L., & Jha, A. N. (2019). Assessing the impact of low level laser therapy (LLLT) on biological systems: a review. International Journal of Radiation Biology, 95(2), 120-143. doi:10.1080/09553002.2019.1524944 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Oliveira, M. L, Akkapeddi, P., Ribeiro, D., Melão, A., & Barata, J. T. (2019). IL-7R-mediated signaling in T-cell acute lymphoblastic leukemia: An update. Advances in Biological Regulation, 71, 88-96. doi:10.1016/j.jbior.2018.09.012 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Oyebode, O., Houreld, N. N., & Abrahamse, H. (2021). Photobiomodulation in diabetic wound healing: A review of red and near-infrared wavelength applications. Cell Biochemistry and Function, 39(5), 596-612. doi:10.1002/cbf.3629 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Pollizzi, K. N., Patel, C. H., Sun, I. H., Oh, M. H., Waickman, A. T., Wen, J., Delgoffe, G. M., & Powell, J. D. (2015). mTORC1 and mTORC2 selectively regulate CD8+ T cell differentiation. Journal of Clinical Investigation, 125(5), 2090-2108. doi:10.1172/JCI77746 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Rahbar Layegh, E., Fadaei Fathabadi, F., Lotfinia, M., Zare, F., Mohammadi Tofigh, A., Abrishami, S., & Piryaei, A. (2020). Photobiomodulation therapy improves the growth factor and cytokine secretory profile in human type 2 diabetic fibroblasts. Journal of Photochemistry and Photobiology B: Biology, 210, 111962. doi:10.1016/j.jphotobiol.2020.111962 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Raizman, R. & Gavish, L. (2020). At-home self-applied photobiomodulation device for the treatment of diabetic foot ulcers in adults with type 2 diabetes: Report of 4 cases. Canadian Journal of Diabetes, 44(5), 375-378. doi:10.1016/j.jcjd.2020.01.010 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Rajendran, N. K., Houreld, N. N., & Abrahamse, H. (2021). In vitro wound healing potential of photobiomodulation is possibly mediated by its stimulatory effect on AKT expression in adipose-derived stem cells. Oxidative Medicine and Cellular Longevity, 6664627. doi:10.1155/2021/6664627 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Rajendran, N. K., Houreld, N. N., & Abrahamse, H. (2021). Photobiomodulation reduces oxidative stress in diabetic wounded fibroblast cells by inhibiting the FOXO1 signaling pathway. Journal of Cell Communication and Signaling, 15(2), 195-206. doi:10.1007/s12079-020-00588-x Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Rhee, Y. H., Moon, J. H., Jung, J. Y., Oh, C., Ahn, J. C., & Chung, P. S. (2019). Effect of photobiomodulation therapy on neuronal injuries by ouabain: the regulation of Na, K-ATPase; Src; and mitogen-activated protein kinase signaling pathway. BMC Neuroscience, 20(1), 19. doi:10.1186/s12868-019-0499-3 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Sano, R., Shinozaki, Y., & Ohta, T. (2020). Sodium-glucose cotransporters: Functional properties and pharmaceutical potential. Journal of Diabetes Investigation, 11(4), 770-782. doi:10.1111/jdi.13255 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Saravia, J., Raynor, J. L., Chapman, N. M., Lim, S. A., & Chi, H. (2020). Signaling networks in immunometabolism. Cell Research, 30(4), 328-342. doi:10.1038/s41422-020-0301-1 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Shaikh-Kader, A., Houreld, N. N., Rajendran, N. K., & Abrahamse, H. (2021). Levels of cyclooxygenase 2, interleukin-6, and tumour necrosis factor-α in fibroblast cell culture models after photobiomodulation at 660 nm. Oxidative Medicine and Cellular Longevity, 6667812. doi:10.1155/2021/6667812 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Sharma, P., Khairnar, V., Madunić, I. V., Singh, Y., Pandyra, A., Salker, M. S., Koepsell, H., Sabolić, I., Lang, F., Lang, P. A., & Lang, K. S. (2017). SGLT1 deficiency turns listeria infection into a lethal disease in mice. Cellular Physiology and Biochemistry, 42(4), 1358-1365. doi:10.1159/000479197 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Sheccid, A. L. (2021). Photobiomodulation effects on insulin secreting beta cells (Masters dissertation). Available from DSpace Theses and Dissertations (library). URI: http://hdl.handle.net/10106/29803 Google Scholar | ||||
| ||||
Shorning, B. Y., Dass, M. S., Smalley, M. J., & Pearson, H. B. (2020). The PI3K-AKT-mTOR pathway and prostate cancer: At the crossroads of AR, MAPK, and WNT signaling. International Journal of Molecular Sciences, 21(12), 4507. doi:10.3390/ijms21124507 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Shyer, J. A., Flavell, R. A., & Bailis, W. (2020). Metabolic signaling in T cells. Cell Research, 30(8), 649-659. doi:10.1038/s41422-020-0379-5 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Silva, G., Ferraresi, C., de Almeida, R. T., Motta, M. L., Paixão, T., Ottone, V. O., Fonseca, I. A., Oliveira, M. X., Rocha-Vieira, E., Dias-Peixoto, M. F., Esteves, E. A., Coimbra, C. C., Amorim, F. T., & de Castro Magalhães, F. (2018). Infrared photobiomodulation (PBMT) therapy improves glucose metabolism and intracellular insulin pathway in adipose tissue of high-fat fed mice. Lasers in Medical Science, 33(3), 559-571. doi:10.1007/s10103-017-2408-2 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Sinclair, L. V., Barthelemy, C., & Cantrell, D. A. (2020). Single cell glucose uptake assays: A cautionary tale. Immunometabolism, 2(4), e200029. doi:10.20900/immunometab20200029 Crossref ● Google Scholar | ||||
| ||||
Siska, P. J. & Rathmell, J. C. (2015). PKCs sweeten cell metabolism by phosphorylation of Glut1. Molecular Cell, 58(5), 711-2. doi:10.1016/j.molcel.2015.05.025 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Stabile, H., Scarno, G., Fionda, C., Gismondi, A., Santoni, A., Gadina, M., & Sciumè, G. (2018). JAK/STAT signaling in regulation of innate lymphoid cells: The gods before the guardians. Immunological Reviews, 286(1), 148-159. doi:10.1111/imr.12705 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Sunemi, S. M., Teixeira, I. L. A., Mansano, B. S. D. M., de Oliveira, H. A., Antonio, E. L., de Souza Oliveira, C., Leal-Junior, E. C. P., Tucci, P. J. F., & Serra, A. J. (2021). Post-resistance exercise photobiomodulation therapy has a more effective antioxidant effect than pre-application on muscle oxidative stress. Photochemical & Photobiological Sciences, 20(4), 585-595. doi:10.1007/s43630-021-00042-w Crossref ● PubMed ● Google Scholar | ||||
| ||||
Takeuchi, A., Kim, B., & Matsuoka, S. (2020). Physiological functions of mitochondrial Na+-Ca2+ exchanger, NCLX, in lymphocytes. Cell Calcium, 85, 102114. doi:10.1016/j.ceca.2019.102114 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Tian, M., Qi, Y., Zhang, X., Wu, Z., Chen, J., Chen, F., Guan, W., & Zhang, S. (2020). Regulation of the JAK2-STAT5 pathway by signaling molecules in the mammary gland. Frontiers in Cell and Developmental Biology, 8, 604896. doi:10.3389/fcell.2020.604896 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Vaeth, M., Maus, M., Klein-Hessling, S., Freinkman, E., Yang, J., Eckstein, M., Cameron, S., Turvey, S. E., Serfling, E., Berberich-Siebelt, F., Possemato, R., & Feske, S. (2017). Store-operated Ca2+ entry controls clonal expansion of T cells through metabolic reprogramming. Immunity, 47(4), 664-679. doi:10.1016/j.immuni.2017.09.003 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Walski, T., Drohomirecka, A., Bujok, J., Czerski, A., Wąż, G., Trochanowska-Pauk, N., Gorczykowski, M., Cichoń, R., & Komorowska, M. (2018). Low-level light therapy protects red blood cells against oxidative stress and hemolysis during extracorporeal circulation. Frontiers in Physiology, 9, 647. doi:10.3389/fphys.2018.00647 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Wang, T., Wang, J., Hu, X., Huang, X. J., & Chen, G. X. (2020). Current understanding of glucose transporter 4 expression and functional mechanisms. World Journal of Biological Chemistry, 11(3), 76-98. doi:10.4331/wjbc.v11.i3.76 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Wilson, C. S. & Moore, D. J. (2020). B cell metabolism: An understudied opportunity to improve immune therapy in autoimmune type 1 diabetes. Immunometabolism, 2(2), e200016. doi:10.20900/immunometab20200016 Crossref ● Google Scholar | ||||
| ||||
Zhang, H., Kong, Q., Wang, J., Jiang, Y., & Hua, H. (2020). Complex roles of cAMP-PKA-CREB signaling in cancer. Experimental Hematology & Oncology, 9(1), 32. doi:10.1186/s40164-020-00191-1 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Zhang, J., Wang, X., Vikash, V., Ye, Q., Wu, D., Liu, Y., & Dong, W. (2016). ROS and ROS-mediated cellular signaling. Oxidative Medicine and Cellular Longevity, 2016, 4350965. doi:10.1155/2016/4350965 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Zhang, Z., Amorosa, L. F., Petrova, A., Coyle, S., Macor, M., Nair, M., Lee, L. Y., & Haimovich, B. (2019). TLR4 counteracts BVRA signaling in human leukocytes via differential regulation of AMPK, mTORC1 and mTORC2. Scientific Reports, 9(1), 7020. doi:10.1038/s41598-019-43347-8 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Zhang, Z., Shen, Q., Wu, X., Zhang, D., & Xing, D. (2020). Activation of PKA/SIRT1 signaling pathway by photobiomodulation therapy reduces Aβ levels in Alzheimer's disease models. Aging Cell, 19(1), e13054. doi:10.1111/acel.13054 Crossref ● Google Scholar | ||||
| ||||
Zhou, X., Li, Y., Ji, Y., Liu, T., Zhao, N., He, J., & Yao, J. (2021). PD-1 involvement in peripheral blood CD8+ T lymphocyte dysfunction in patients with acute-on-chronic liver failure. Journal of Clinical and Translational Hepatology, 9(3), 283-290. doi:10.14218/JCTH.2020.00142 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Zhu, F., Wang, K. B., & Rui, L. (2019). STAT3 activation and oncogenesis in lymphoma. Cancers (Basel), 12(1), 19. doi:10.3390/cancers12010019 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Ziegler, G. C., Almos, P., McNeill, R. V., Jansch, C., & Lesch, K. P. (2020). Cellular effects and clinical implications of SLC2A3 copy number variation. Journal of Cellular Physiology, 235(12), 9021-9036. doi:10.1002/jcp.29753 Crossref ● PubMed ● Google Scholar |
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 A. O. Maslakova, M. Ya. Liuta, N. O. Sybirna
This work is licensed under a Creative Commons Attribution 4.0 International License.