EFFECT OF PHOTOBIOMODULATION THERAPY ON THE REGULATION OF GLUCOSE UPTAKE BY LYMPHOCYTES IN DIABETES MELLITUS (REVIEW)

A. O. Maslakova, M. Ya. Liuta, N. O. Sybirna


DOI: http://dx.doi.org/10.30970/sbi.1504.671

Abstract


For most cells, including lymphocytes, glucose is a primary energy source, and, therefore, it is vital to understand the regulatory mechanisms that control the work of glucose transporters. Lymphocytes are pivotal for mediation of immune and inflammatory responses. A feature of lymphocytes is increasing glucose utilization during activation of the immune function, which is strongly dependent on glucose uptake. Some studies show that elevated glucose concentration in diabetes mellitus affects lymphocytes’ glucose transporters expression, which correlates with impaired immune functions and may become one of the predisposing factors of contracting infectious diseases. Recent studies have focused on glucose transporters as therapeutic targets for a variety of diseases, including diabetes mellitus. This review demonstrates the effect of photobiomodulation therapy on glucose uptake by Na+-coupled glucose carrier SGLT1 and facilitated diffusion glucose carriers of the GLUT family (GLUT1, GLUT3, GLUT4) in normal and diabetic lymphocytes.


Keywords


GLUT, SGLT1, photobiomodulation, lymphocytes, diabetes mellitus

Full Text:

PDF

References


Ahmadi, H., Amini, A., Fadaei Fathabady, F., Mostafavinia, A., Zare, F., Ebrahimpour-Malekshah, R., Ghalibaf, M. N., Abrisham, M., Rezaei F., Albright, R., Ghoreishi, S. K., Chien, S., & Bayat, M. (2020) Transplantation of photobiomodulation-preconditioned diabetic stem cells accelerates ischemic wound healing in diabetic rats. Stem Cell Research & Therapy, 11(1), 494. doi:10.1186/s13287-020-01967-2
CrossrefPubMedPMCGoogle Scholar

Alexandria, F. E. D., de Silva, N. C., Maia Filho, A. L. M., Assis, L., & Tim, C. R. (2020) Wound healing in diabetic: a review of photobiomodulation therapy applications. Research, Society and Development, 9(10), e259108310. doi:10.33448/rsd-v9i10.8310
CrossrefGoogle Scholar

Ancey, P. B., Contat, C., & Meylan, E. (2018). Glucose transporters in cancer - from tumor cells to the tumor microenvironment. FEBS Journal, 285(16), 2926-2943. doi:10.1111/febs.14577
CrossrefPubMedGoogle Scholar

Arumugham, V. B. & Baldari, C. T. (2017). cAMP: a multifaceted modulator of immune synapse assembly and T cell activation. Journal of Leukocyte Biology, 101(6), 1301-1316. doi:10.1189/jlb.2RU1116-474R
CrossrefPubMedGoogle Scholar

Avanzato, D., Pupo, E., Ducano, N., Isella, C., Bertalot, G., Luise, C., Pece, S., Bruna, A., Rueda, O. M., Caldas, C., Di Fiore, P. P., Sapino, A., & Lanzetti, L. (2018). High USP6NL levels in breast cancer sustain chronic AKT phosphorylation and GLUT1 stability fueling aerobic glycolysis. Cancer Research, 78(13), 3432-3444. doi:10.1158/0008-5472.CAN-17-3018
CrossrefPubMedGoogle Scholar

Berry, C. T., May, M. J., & Freedman, B. D. (2018). STIM- and Orai-mediated calcium entry controls NF-κB activity and function in lymphocytes. Cell Calcium, 74, 131-143. doi:10.1016/j.ceca.2018.07.003
CrossrefPubMedPMCGoogle Scholar

Bhavsar, S. K., Singh, Y., Sharma, P., Khairnar, V., Hosseinzadeh, Z., Zhang, S., Palmada, M., Sabolic, I., Koepsell, H., Lang, K. S., Lang, P. A., & Lang, F. (2016). Expression of JAK3 sensitive Na+ coupled glucose carrier SGLT1 in activated cytotoxic T lymphocytes. Cellular Physiology and Biochemistry, 39(3), 1209-1228. doi:10.1159/000447827
CrossrefPubMedGoogle Scholar

Bruce, J. I. E. (2018). Metabolic regulation of the PMCA: Role in cell death and survival. Cell Calcium, 69, 28-36. doi:10.1016/j.ceca.2017.06.001
CrossrefPubMedPMCGoogle Scholar

Byrne, F. L., Olzomer, E. M., Brink, R., & Hoehn, K. L. (2018). Knockout of glucose transporter GLUT6 has minimal effects on whole body metabolic physiology in mice. American Journal of Physiology-Endocrinology and Metabolism, 315(2), E286-E293. doi:10.1152/ajpendo.00082.2018
CrossrefPubMedGoogle Scholar

Chan, O, Burke, J. D., Gao, D. F., & Fish, E. N. (2012). The chemokine CCL5 regulates glucose uptake and AMP kinase signaling in activated T cells to facilitate chemotaxis. Journal of Biological Chemistry, 287(35), 29406-16. doi:10.1074/jbc.M112.348946
CrossrefPubMedPMCGoogle Scholar

Chen, H., Tu, M., Shi, J., Wang, Y., Hou, Z., & Wang, J. (2021). Effect of photobiomodulation on CCC-ESF reactive oxygen species steady-state in high glucose mediums. Lasers in Medical Science, 36(3), 555-562. doi:10.1007/s10103-020-03057-4
CrossrefPubMedGoogle Scholar

Clement, D., Goodridge, J. P., Grimm, C., Patel, S., & Malmberg, K. J. (2020). TRP channels as interior designers: remodeling the endolysosomal compartment in natural killer cells. Frontiers in Immunology, 11, 753. doi:10.3389/fimmu.2020.00753
CrossrefPubMedPMCGoogle Scholar

Colombo, E., Signore, A., Aicardi, S., Zekiy, A., Utyuzh, A., Benedicenti, S., & Amaroli, A. (2021). Experimental and clinical applications of red and near-infrared photobiomodulation on endothelial dysfunction: A review. Biomedicines, 9(3), 274. doi:10.3390/biomedicines9030274
CrossrefPubMedPMCGoogle Scholar

Coulson, D. J., Bakhashab, S., Latief, J. S., & Weaver, J. U. (2021). MiR-126, IL-7, CXCR1/2 receptors, inflammation and circulating endothelial progenitor cells: The study on targets for treatment pathways in a model of subclinical cardiovascular disease (type 1 diabetes mellitus). Journal of Translational Medicine, 19(1), 140. doi:10.1186/s12967-021-02785-7
CrossrefPubMedPMCGoogle Scholar

Dai, H. & Thomson, A. W. (2019). The "other" mTOR complex: New insights into mTORC2 immunobiology and their implications. American Journal of Transplantation, 19(6), 1614-1621. doi:10.1111/ajt.15320
CrossrefPubMedPMCGoogle Scholar

Daryabor, G., Atashzar, M. R., Kabelitz, D., Meri, S., & Kalantar, K. (2020). The effects of type 2 diabetes mellitus on organ metabolism and the immune system. Frontiers in Immunology, 11, 1582. doi:10.3389/fimmu.2020.01582
CrossrefPubMedPMCGoogle Scholar

De Barrios, O., Meler, A., & Parra, M. (2020). MYC's fine line between B cell development and malignancy. Cells, 9(2), 523. doi:10.3390/cells9020523
CrossrefPubMedPMCGoogle Scholar

De Freitas, L. F. & Hamblin, M. R. (2016). Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE Journal of Selected Topics in Quantum Electronics, 22(3), 7000417. doi:10.1109/JSTQE.2016.2561201
CrossrefPubMedPMCGoogle Scholar

Di Dedda, C., Vignali, D., Piemonti, L., & Monti, P. (2019). Pharmacological targeting of GLUT1 to control autoreactive T cell responses. International Journal of Molecular Sciences, 20(19), 4962. doi:10.3390/ijms20194962
CrossrefPubMedPMCGoogle Scholar

Dou, M., Ma, Y., Ma, A. G., Han, L., Song, M. M., Wang, Y. G., Yao, M. X., Sun, X. F., Li, Y., Gao, S., & Zhang, Y. (2016). Combined chromium and magnesium decreases insulin resistance more effectively than either alone. Asia Pacific Journal of Clinical Nutrition, 25(4), 747-753. doi:10.6133/apjcn.092015.48
CrossrefPubMedGoogle Scholar

Gong, L., Zou, Z., Liu, L., Guo, S., & Xin, D. (2021). Photobiomodulation therapy ameliorates hyperglycemia and insulin resistance by activating cytochrome c oxidase-mediated protein kinase B in muscle. Aging (Albany NY), 13(7), 10015-10033. doi:10.18632/aging.202760
CrossrefPubMedPMCGoogle Scholar

González-García, S., García-Peydró, M., Alcain, J., & Toribio, M. L. (2012). Notch1 and IL-7 receptor signalling in early T-cell development and leukaemia. Current Topics in Microbiology and Immunology, 360, 47-73. doi:10.1007/82_2012_231
CrossrefPubMedGoogle Scholar

Gopalakrishnan, S., Mehrvar, S., Maleki, S., Schmitt, H., Summerfelt, P., Dubis, A. M., Abroe, B., Connor, T. B. Jr., Carroll, J., Huddleston, W., Ranji, M., & Eells, J. T. (2020). Photobiomodulation preserves mitochondrial redox state and is retinoprotective in a rodent model of retinitis pigmentosa. Scientific Reports, 10(1), 20382. doi:10.1038/s41598-020-77290-w
CrossrefPubMedPMCGoogle Scholar

Guo, S., Gong, L., Shen, Q., & Xing, D. (2020). Photobiomodulation reduces hepatic lipogenesis and enhances insulin sensitivity through activation of CaMKKβ/AMPK signaling pathway. Journal of Photochemistry and Photobiology B, 213, 112075. doi:10.1016/j.jphotobiol.2020.112075
CrossrefPubMedGoogle Scholar

Hamblin, M. R. (2017). Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophysics, 4(3), 337-361. doi:10.3934/biophy.2017.3.337
CrossrefPubMedPMCGoogle Scholar

Hamblin, M. R. (2018). Mechanisms and mitochondrial redox signaling in photobiomodulation. Photochemistry and Photobiology, 94(2), 199-212. doi:10.1111/php.12864
CrossrefPubMedPMCGoogle Scholar

Hogan, P. G., Chen, L., Nardone, J., & Rao, A. (2003). Transcriptional regulation by calcium, calcineurin, and NFAT. Genes & Development, 17(18), 2205-32. doi:10.1101/gad.1102703
CrossrefPubMedGoogle Scholar

Houreld, N. N. (2019). Healing effects of photobiomodulation on diabetic wounds. Applied Sciences, 9(23), 5114. doi:10.3390/app9235114
CrossrefGoogle Scholar

Jere, S. W., Houreld, N. N., & Abrahamse, H. (2019). Role of the PI3K/AKT (mTOR and GSK3β) signalling pathway and photobiomodulation in diabetic wound healing. Cytokine & Growth Factor Reviews, 50, 52-59. doi:10.1016/j.cytogfr.2019.03.001
CrossrefPubMedGoogle Scholar

Jere, S. W., Houreld, N. N., & Abrahamse, H. (2020). Photobiomodulation and the expression of genes related to the JAK/STAT signalling pathway in wounded and diabetic wounded cells. Journal of Photochemistry and Photobiology B, 204, 111791. doi:10.1016/j.jphotobiol.2020.111791
CrossrefPubMedGoogle Scholar

Jere, S. W., Houreld, N. N., & Abrahamse, H. (2021). Effect of photobiomodulation on cellular migration and survival in diabetic and hypoxic diabetic wounded fibroblast cells. Lasers in Medical Science. 2021, 36(2), 365-374. doi:10.1007/s10103-020-03041-y
CrossrefPubMedGoogle Scholar

Kaiser, M., Wiggin, G. R., Lightfoot, K., Arthur, J. S., & Macdonald, A. (2007). MSK regulate TCR-induced CREB phosphorylation but not immediate early gene transcription. European Journal of Immunology, 37(9), 2583-95. doi:10.1002/eji.200636606
CrossrefPubMedGoogle Scholar

Karkada, G., Maiya, G. A., Arany, P., Rao, M., Adiga, S., & Kamath, S. U. (2021). Effect of photobiomodulation therapy on oxidative stress markers in healing dynamics of diabetic neuropathic wounds in Wistar rats. Cell Biochemistry and Biophysics. doi:10.1007/s12013-021-01021-9
CrossrefPubMedGoogle Scholar

Karmash, O. I., Liuta, M. Ya., Korobov, A. M., & Sybirna N. O. (2020). The effect of photobiomodulation therapy on oxidative stress progressing in blood leukocytes of streptozotocin-induced diabetic rats. Cytology and Genetics, 54(5), 97-107. doi:10.3103/S0095452720050114 [In Ukrainian]
CrossrefGoogle Scholar

Karmash, O. I., Liuta, M. Ya., Yefimenko N. V., & Sybirna N. O. (2021) The effect of photobiomodulation therapy on some indices of rats' blood cells functional state under experimental diabetes mellitus. Studia Biologica, 15(3), 3-16. doi:10.30970/sbi.1503.659
CrossrefGoogle Scholar

Kavanagh, W. M, Coombes, N., Juszczak, F., Athanasopoulos, M., Khan, M. B., Eykyn, T. R., Srenathan, U., Taams, L. S., Dias, Z. J., Da Poian, A. T., & Huthoff, H. (2018). Upregulation of glucose uptake and hexokinase activity of primary human CD4+ T cells in response to infection with HIV-1. Viruses, 10(3), 114. doi:10.3390/v10030114
CrossrefPubMedPMCGoogle Scholar

Kawauchi, K., Araki, K., Tobiume, K., & Tanaka, N. (2008). p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation. Nature Cell Biology, 10(5), 611-8. doi:10.1038/ncb1724
CrossrefPubMedGoogle Scholar

Kazyken, D., Lentz, S. I., & Fingar, D. C. (2021). Alkaline intracellular pH (pHi) activates AMPK-mTORC2 signaling to promote cell survival during growth factor limitation. Journal of Biological Chemistry, 297(4), 101100. doi:10.1016/j.jbc.2021.101100
CrossrefPubMedPMCGoogle Scholar

Kazyken, D., Magnuson, B., Bodur, C., Acosta-Jaquez, H. A., Zhang, D., Tong, X., Barnes, T. M., Steinl, G. K., Patterson, N. E., Altheim, C. H., Sharma, N., Inoki, K., Cartee, G. D., Bridges, D., Yin, L., Riddle, S. M., & Fingar, D. C. (2019). AMPK directly activates mTORC2 to promote cell survival during acute energetic stress. Science Signaling, 12(585), eaav3249. doi:10.1126/scisignal.aav3249
CrossrefPubMedPMCGoogle Scholar

Kipmen-Korgun, D., Bilmen-Sarıkçıoğlu, S., Altunbas, H., Demir, R., & Korgun, E. T. (2009). Type-2 diabetes down-regulates glucose transporter proteins and genes of the human blood leukocytes. Scandinavian Journal of Clinical and Laboratory Investigation, 69(3), 350-358. doi:10.1080/00365510802632163
CrossrefPubMedGoogle Scholar

Koepsell, H. & Vallon, V. (2020). A special issue on glucose transporters in health and disease. Pflügers Archiv, 472(9), 1107-1109. doi:10.1007/s00424-020-02442-w
CrossrefPubMedPMCGoogle Scholar

Koepsell, H. (2017). The Na+-D-glucose cotransporters SGLT1 and SGLT2 are targets for the treatment of diabetes and cancer. Pharmacology & Therapeutics, 170, 148-165. doi:10.1016/j.pharmthera.2016.10.017
CrossrefPubMedGoogle Scholar

Koepsell, H. (2020). Glucose transporters in the small intestine in health and disease. Pflügers Archiv, 472(9), 1207-1248. doi:10.1007/s00424-020-02439-5
CrossrefPubMedPMCGoogle Scholar

Kress, T. R., Sabò, A., & Amati, B. (2015). MYC: connecting selective transcriptional control to global RNA production. Nature Reviews Cancer, 15(10), 593-607. doi:10.1038/nrc3984
CrossrefPubMedGoogle Scholar

Lang, F., Singh, Y., Salker, M. S., Ma, K., Pandyra, A. A., Lang, P. A., & Lang, K. S. (2020). Glucose transport in lymphocytes. Pflügers Archiv, 472(9), 1401-1406. doi:10.1007/s00424-020-02416-y
CrossrefPubMedGoogle Scholar

Liebert, A., Krause, A., Goonetilleke, N., Bicknell, B., & Kiat, H. (2017). A role for photobiomodulation in the prevention of myocardial ischemic reperfusion injury: A systematic review and potential molecular mechanisms. Scientific Reports, 7, 42386. doi:10.1038/srep42386
CrossrefPubMedPMCGoogle Scholar

Maedera, S., Mizuno, T., Ishiguro, H., Ito, T., Soga, T., & Kusuhara, H. (2019). GLUT6 is a lysosomal transporter that is regulated by inflammatory stimuli and modulates glycolysis in macrophages. FEBS Letters, 593(2), 195-208. doi:10.1002/1873-3468.13298
CrossrefPubMedGoogle Scholar

Marks, R. (2021). Photobiomodulation: a potential adjunctive obesity intervention a review. Advances in Obesity, Weight Management & Control, 11(4), 135-139. doi:10.15406/aowmc.2021.11.00347
CrossrefGoogle Scholar

Martínez-Limón, A., Joaquin, M., Caballero, M., Posas, F., & de Nadal, E. (2020). The p38 pathway: from biology to cancer therapy. International Journal of Molecular Sciences, 21(6), 1913. doi:10.3390/ijms21061913
CrossrefPubMedPMCGoogle Scholar

Mehrvar, S., Mostaghimi, S., Foomani, F. H., Abroe, B., Eells, J. T., Gopalakrishnan, S., & Ranji, M. (2021). 670 nm photobiomodulation improves the mitochondrial redox state of diabetic wounds. Quantitative Imaging in Medicine and Surgery, 11(1), 107-118. doi:10.21037/qims-20-522
CrossrefPubMedPMCGoogle Scholar

Mokoena, D. R., Houreld, N. N., Dhilip Kumar, S. S., & Abrahamse, H. (2020). Photobiomodulation at 660 nm stimulates fibroblast differentiation. Lasers in Surgery and Medicine, 52(7), 671-681. doi:10.1002/lsm.23204
CrossrefPubMedGoogle Scholar

Moradi, A., Zare, F., Mostafavinia, A., Safaju, S., Shahbazi, A., Habibi, M., Abdollahifar, M. A., Hashemi, S. M., Amini, A., Ghoreishi, S. K., Chien, S., Hamblin, M. R., Kouhkheil, R., & Bayat, M. (2020). Photobiomodulation plus adipose-derived stem cells improve healing of ischemic infected wounds in type 2 diabetic rats. Scientific Reports, 10(1), 1206. doi:10.1038/s41598-020-58099-z
CrossrefPubMedPMCGoogle Scholar

Mussttaf, R. A., Jenkins, D. F. L., & Jha, A. N. (2019). Assessing the impact of low level laser therapy (LLLT) on biological systems: a review. International Journal of Radiation Biology, 95(2), 120-143. doi:10.1080/09553002.2019.1524944
CrossrefPubMedGoogle Scholar

Oliveira, M. L, Akkapeddi, P., Ribeiro, D., Melão, A., & Barata, J. T. (2019). IL-7R-mediated signa­ling in T-cell acute lymphoblastic leukemia: An update. Advances in Biological Regulation, 71, 88-96. doi:10.1016/j.jbior.2018.09.012
CrossrefPubMedPMCGoogle Scholar

Oyebode, O., Houreld, N. N., & Abrahamse, H. (2021). Photobiomodulation in diabetic wound healing: A review of red and near-infrared wavelength applications. Cell Biochemistry and Function, 39(5), 596-612. doi:10.1002/cbf.3629
CrossrefPubMedGoogle Scholar

Pollizzi, K. N., Patel, C. H., Sun, I. H., Oh, M. H., Waickman, A. T., Wen, J., Delgoffe, G. M., & Powell, J. D. (2015). mTORC1 and mTORC2 selectively regulate CD8+ T cell differentiation. Journal of Clinical Investigation, 125(5), 2090-2108. doi:10.1172/JCI77746
CrossrefPubMedPMCGoogle Scholar

Rahbar Layegh, E., Fadaei Fathabadi, F., Lotfinia, M., Zare, F., Mohammadi Tofigh, A., Abrishami, S., & Piryaei, A. (2020). Photobiomodulation therapy improves the growth factor and cytokine secretory profile in human type 2 diabetic fibroblasts. Journal of Photochemistry and Photobiology B: Biology, 210, 111962. doi:10.1016/j.jphotobiol.2020.111962
CrossrefPubMedGoogle Scholar

Raizman, R. & Gavish, L. (2020). At-home self-applied photobiomodulation device for the treatment of diabetic foot ulcers in adults with type 2 diabetes: Report of 4 cases. Canadian Journal of Diabetes, 44(5), 375-378. doi:10.1016/j.jcjd.2020.01.010
CrossrefPubMedGoogle Scholar

Rajendran, N. K., Houreld, N. N., & Abrahamse, H. (2021). In vitro wound healing potential of photobiomodulation is possibly mediated by its stimulatory effect on AKT expression in adipose-derived stem cells. Oxidative Medicine and Cellular Longevity, 6664627. doi:10.1155/2021/6664627
CrossrefPubMedPMCGoogle Scholar

Rajendran, N. K., Houreld, N. N., & Abrahamse, H. (2021). Photobiomodulation reduces oxidative stress in diabetic wounded fibroblast cells by inhibiting the FOXO1 signaling pathway. Journal of Cell Communication and Signaling, 15(2), 195-206. doi:10.1007/s12079-020-00588-x
CrossrefPubMedPMCGoogle Scholar

Rhee, Y. H., Moon, J. H., Jung, J. Y., Oh, C., Ahn, J. C., & Chung, P. S. (2019). Effect of photo­biomodulation therapy on neuronal injuries by ouabain: the regulation of Na, K-ATPase; Src; and mitogen-activated protein kinase signaling pathway. BMC Neuroscience, 20(1), 19. doi:10.1186/s12868-019-0499-3
CrossrefPubMedPMCGoogle Scholar

Sano, R., Shinozaki, Y., & Ohta, T. (2020). Sodium-glucose cotransporters: Functional properties and pharmaceutical potential. Journal of Diabetes Investigation, 11(4), 770-782. doi:10.1111/jdi.13255
CrossrefPubMedPMCGoogle Scholar

Saravia, J., Raynor, J. L., Chapman, N. M., Lim, S. A., & Chi, H. (2020). Signaling networks in immunometabolism. Cell Research, 30(4), 328-342. doi:10.1038/s41422-020-0301-1
CrossrefPubMedPMCGoogle Scholar

Shaikh-Kader, A., Houreld, N. N., Rajendran, N. K., & Abrahamse, H. (2021). Levels of cyclooxygenase 2, interleukin-6, and tumour necrosis factor-α in fibroblast cell culture models after photobiomodulation at 660 nm. Oxidative Medicine and Cellular Longevity, 6667812. doi:10.1155/2021/6667812
CrossrefPubMedPMCGoogle Scholar

Sharma, P., Khairnar, V., Madunić, I. V., Singh, Y., Pandyra, A., Salker, M. S., Koepsell, H., Sabolić, I., Lang, F., Lang, P. A., & Lang, K. S. (2017). SGLT1 deficiency turns listeria infection into a lethal disease in mice. Cellular Physiology and Biochemistry, 42(4), 1358-1365. doi:10.1159/000479197
CrossrefPubMedGoogle Scholar

Sheccid, A. L. (2021). Photobiomodulation effects on insulin secreting beta cells (Masters dissertation). Available from DSpace Theses and Dissertations (library). URI: http://hdl.handle.net/10106/29803
Google Scholar

Shorning, B. Y., Dass, M. S., Smalley, M. J., & Pearson, H. B. (2020). The PI3K-AKT-mTOR pathway and prostate cancer: At the crossroads of AR, MAPK, and WNT signaling. International Journal of Molecular Sciences, 21(12), 4507. doi:10.3390/ijms21124507
CrossrefPubMedPMCGoogle Scholar

Shyer, J. A., Flavell, R. A., & Bailis, W. (2020). Metabolic signaling in T cells. Cell Research, 30(8), 649-659. doi:10.1038/s41422-020-0379-5
CrossrefPubMedPMCGoogle Scholar

Silva, G., Ferraresi, C., de Almeida, R. T., Motta, M. L., Paixão, T., Ottone, V. O., Fonseca, I. A., Oliveira, M. X., Rocha-Vieira, E., Dias-Peixoto, M. F., Esteves, E. A., Coimbra, C. C., Amorim, F. T., & de Castro Magalhães, F. (2018). Infrared photobiomodulation (PBMT) therapy improves glucose metabolism and intracellular insulin pathway in adipose tissue of high-fat fed mice. Lasers in Medical Science, 33(3), 559-571. doi:10.1007/s10103-017-2408-2
CrossrefPubMedGoogle Scholar

Sinclair, L. V., Barthelemy, C., & Cantrell, D. A. (2020). Single cell glucose uptake assays: A cautionary tale. Immunometabolism, 2(4), e200029. doi:10.20900/immunometab20200029
CrossrefGoogle Scholar

Siska, P. J. & Rathmell, J. C. (2015). PKCs sweeten cell metabolism by phosphorylation of Glut1. Molecular Cell, 58(5), 711-2. doi:10.1016/j.molcel.2015.05.025
CrossrefPubMedPMCGoogle Scholar

Stabile, H., Scarno, G., Fionda, C., Gismondi, A., Santoni, A., Gadina, M., & Sciumè, G. (2018). JAK/STAT signaling in regulation of innate lymphoid cells: The gods before the guardians. Immunological Reviews, 286(1), 148-159. doi:10.1111/imr.12705
CrossrefPubMedPMCGoogle Scholar

Sunemi, S. M., Teixeira, I. L. A., Mansano, B. S. D. M., de Oliveira, H. A., Antonio, E. L., de Souza Oliveira, C., Leal-Junior, E. C. P., Tucci, P. J. F., & Serra, A. J. (2021). Post-resistance exercise photobiomodulation therapy has a more effective antioxidant effect than pre-application on muscle oxidative stress. Photochemical & Photobiological Sciences, 20(4), 585-595. doi:10.1007/s43630-021-00042-w
CrossrefPubMedGoogle Scholar

Takeuchi, A., Kim, B., & Matsuoka, S. (2020). Physiological functions of mitochondrial Na+-Ca2+ exchanger, NCLX, in lymphocytes. Cell Calcium, 85, 102114. doi:10.1016/j.ceca.2019.102114
CrossrefPubMedGoogle Scholar

Tian, M., Qi, Y., Zhang, X., Wu, Z., Chen, J., Chen, F., Guan, W., & Zhang, S. (2020). Regulation of the JAK2-STAT5 pathway by signaling molecules in the mammary gland. Frontiers in Cell and Developmental Biology, 8, 604896. doi:10.3389/fcell.2020.604896
CrossrefPubMedPMCGoogle Scholar

Vaeth, M., Maus, M., Klein-Hessling, S., Freinkman, E., Yang, J., Eckstein, M., Cameron, S., Turvey, S. E., Serfling, E., Berberich-Siebelt, F., Possemato, R., & Feske, S. (2017). Store-operated Ca2+ entry controls clonal expansion of T cells through metabolic reprogramming. Immunity, 47(4), 664-679. doi:10.1016/j.immuni.2017.09.003
CrossrefPubMedPMCGoogle Scholar

Walski, T., Drohomirecka, A., Bujok, J., Czerski, A., Wąż, G., Trochanowska-Pauk, N., Gorczykowski, M., Cichoń, R., & Komorowska, M. (2018). Low-level light therapy protects red blood cells against oxidative stress and hemolysis during extracorporeal circulation. Frontiers in Physiology, 9, 647. doi:10.3389/fphys.2018.00647
CrossrefPubMedPMCGoogle Scholar

Wang, T., Wang, J., Hu, X., Huang, X. J., & Chen, G. X. (2020). Current understanding of glucose transporter 4 expression and functional mechanisms. World Journal of Biological Chemistry, 11(3), 76-98. doi:10.4331/wjbc.v11.i3.76
CrossrefPubMedPMCGoogle Scholar

Wilson, C. S. & Moore, D. J. (2020). B cell metabolism: An understudied opportunity to improve immune therapy in autoimmune type 1 diabetes. Immunometabolism, 2(2), e200016. doi:10.20900/immunometab20200016
CrossrefGoogle Scholar

Zhang, H., Kong, Q., Wang, J., Jiang, Y., & Hua, H. (2020). Complex roles of cAMP-PKA-CREB signaling in cancer. Experimental Hematology & Oncology, 9(1), 32. doi:10.1186/s40164-020-00191-1
CrossrefPubMedPMCGoogle Scholar

Zhang, J., Wang, X., Vikash, V., Ye, Q., Wu, D., Liu, Y., & Dong, W. (2016). ROS and ROS-mediated cellular signaling. Oxidative Medicine and Cellular Longevity, 2016, 4350965. doi:10.1155/2016/4350965
CrossrefPubMedPMCGoogle Scholar

Zhang, Z., Amorosa, L. F., Petrova, A., Coyle, S., Macor, M., Nair, M., Lee, L. Y., & Haimovich, B. (2019). TLR4 counteracts BVRA signaling in human leukocytes via differential regulation of AMPK, mTORC1 and mTORC2. Scientific Reports, 9(1), 7020. doi:10.1038/s41598-019-43347-8
CrossrefPubMedPMCGoogle Scholar

Zhang, Z., Shen, Q., Wu, X., Zhang, D., & Xing, D. (2020). Activation of PKA/SIRT1 signaling pathway by photobiomodulation therapy reduces Aβ levels in Alzheimer's disease models. Aging Cell, 19(1), e13054. doi:10.1111/acel.13054
CrossrefGoogle Scholar

Zhou, X., Li, Y., Ji, Y., Liu, T., Zhao, N., He, J., & Yao, J. (2021). PD-1 involvement in peripheral blood CD8+ T lymphocyte dysfunction in patients with acute-on-chronic liver failure. Journal of Clinical and Translational Hepatology, 9(3), 283-290. doi:10.14218/JCTH.2020.00142
CrossrefPubMedPMCGoogle Scholar

Zhu, F., Wang, K. B., & Rui, L. (2019). STAT3 activation and oncogenesis in lymphoma. Cancers (Basel), 12(1), 19. doi:10.3390/cancers12010019
CrossrefPubMedPMCGoogle Scholar

Ziegler, G. C., Almos, P., McNeill, R. V., Jansch, C., & Lesch, K. P. (2020). Cellular effects and clinical implications of SLC2A3 copy number variation. Journal of Cellular Physiology, 235(12), 9021-9036. doi:10.1002/jcp.29753
CrossrefPubMedGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 A. O. Maslakova, M. Ya. Liuta, N. O. Sybirna

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.