UTILIZATION OF AROMATIC COMPOUNDS BY BACTERIA. І. AEROBIC AND ANAEROBIC DESTRUCTION

N. S. Verkholiak, T. B. Peretyatko


DOI: http://dx.doi.org/10.30970/sbi.1202.566

Abstract


This review summarizes current information on the extent of environmental pollution by xenobiotics of aromatic nature, and their toxic effects on living organisms. Phenols, monocyclic (benzene, toluene, xylene etc) and polycyclic aromatic hydrocarbons (naphthalene, anthracene, phenanthrene, biphenуls, pyrene, benzpyrene, pyridine etc.) are the most dangerous pollutant aromatic compounds. A variety of microorganisms capable to destroy the aromatic compounds is described. The biodegradation of aromatic pollutants is carried out by denitrifying, sulfate-reducing, photosynthetic, fermentation, iron-reducing, acetogenic bacteria and methanogens. The paper analyzes and generalizes the ways of decomposition of compounds of aromatic nature under bacterial aerobic and anaerobic conditions, describes the peripheral ways of oxidation of aromatic compounds and their regulation, examines the ability of microorganisms to use substituents in the benzene ring as a source of carbon and nitrogen. The processes of aerobic and anaerobic biodegradation of aromatic compounds have common particularities, that are the key intermediates formation. These intermediates are involved into the central metabolism of the cell due to the activity of metabolic pathways of various groups of microorganisms. Under the aerobic conditions, the rupture of benzene ring can occur between two successively connected carbon atoms carrying hydroxyl groups (ortho-cleavage), or on other C-C bonds of the nucleus in meta-position (meta-clea­vage). The central metabolic pathways provide a formation of intermediate compounds of the Krebs cycle. Benzoyl-CoA is a central intermediate of decomposition of aromatic xenobiotics under anaerobic conditions. In this review, different variants of benzoyl-CoA pathway for the degradation of aromatic compounds by bacteria are considered. Due to the destruction of aromatic compounds by various microorganisms, a large number of intermediate metabolites are formed. They are further degraded by bacteria of various ecological trophic groups. At the result, complete decomposition of the aromatic compounds occurs. The ability of microorganisms to decompose xenobiotics enables sol­ving a number of environmental problems associated with both the use of chemical pesticides and the discharge of untreated industrial wastewater.


Keywords


xenobiotics, degradation, aromatic compounds, benzoyl-CoA pathway

References


1. Al-Shammari F.D.Kh., Vasilenko S.L., Titok M.A. Search for effective strains-destructors of aromatic hydrocarbons. Vestnik BSU. Series 2: Chemistry. Biology. Geography, 2010; 2(1): 35-39. (In Russian)

2. Beller H.R., Spormann A.M., Sharma P.K., Cole J.R., Reinhard M. Isolation and characterisation of a novel toluene-degrading sulfate-reducing bacterium. Appl. Environ. Microbiol, 1996; 62: 1188-1196.

3. Bernstein A., Adar E., Nejidat A., Ronen Z. Isolation and characterization of RDX-degrading Rhodococcus species from a contaminated aquifer. Biodegradation, 2011; 22(5): 997-1005.
https://doi.org/10.1007/s10532-011-9458-0
PMid:21327803

4. Boll M., Fuchs G. Benzoyl-coenzyme A reductase (dearomatising), a key enzyme of anaerobic aromatic metabolism. ATP dependence of the reaction, purification and some properties of the enzyme from Thauera aromatica strain K172. Eur. J. Biochem, 1995; 234: 921-933.
https://doi.org/10.1111/j.1432-1033.1995.921_a.x
PMid:8575453

5. Boll M., Fuchs G. Identification and characterization of the natural electron donor ferredoxin and of FAD as a possible prosthetic group of benzoyl-CoA reductase (dearomatizing), a key enzyme of anaerobic aromatic metabolism. Eur. J. Biochem, 1998; 251(3): 946-954.
https://doi.org/10.1046/j.1432-1327.1998.2510946.x
PMid:9490071

6. Chung W.K., King G.M. Isolation, Characterization, and Polyaromatic Hydrocarbon Degradation Potential of Aerobic Bacteria from Marine Macrofaunal Burrow Sediments and Description of Lutibacterium anuloederans gen. nov., sp. nov., and Cycloclasticus spirillensus sp. nov. Appl. and Environ. Microbiol, 2001; 67(12): 5585-5592.
https://doi.org/10.1128/AEM.67.12.5585-5592.2001
PMid:11722910 PMCid:PMC93347

7. Cuevaa C., Moreno-Arribasa M.V., Martín-Álvareza P.J. et al. Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. Research in Microbiology, 2010; 161(5): 372-382.
https://doi.org/10.1016/j.resmic.2010.04.006
PMid:20451604

8. Daane L.L., Harjono I., Zylstra G.J., Haggblom M.M. Isolation and Characterization of Polycyclic Aromatic Hydrocarbon-Degrading Bacteria Associated with the Rhizosphere of Salt Marsh Plants. Appl. and Environ. Microbiol, 2001; 67(6): 2683- 2691.
https://doi.org/10.1128/AEM.67.6.2683-2691.2001
PMid:11375181 PMCid:PMC92925

9. Dangel W., Brackmann R., Lack A., Mohamed M., Koch, J., Oswald B., Seyfried B., Tschech A., Fuchs G. Differential expression of enzyme activities initiating anoxic metabolism of various aromatic compounds via benzoyl-CoA. Arch. Microbiol, 1991; 155(3): 256-262.
https://doi.org/10.1007/BF00252209

10. Defnoun S., Labat M., Ambrosio M., Garcia J.L., Patel B.K. Papillibacter cinnamivorans gen. nov., sp. nov., a cinnamate-transforming bacterium from a shea cake digester. Int. J. Syst. Evol. Microbiol, 2000; 50:1221-1228.
https://doi.org/10.1099/00207713-50-3-1221
PMid:10843066

11. Dudnik S.V., Yevtushenko M.Yu. Water toxicology: basic theoretical positions and their practical application. K.: View of the Ukrainian Phytosociological Center, 2013. 297 p. (In Ukrainian)

12. Dutton P.L., Evans W.C. The metabolism of aromatic compounds by Rhodopseudomonas palustris. A new, reductive, method of aromatic ring metabolism. Biochemical Journal, 1969; 113(3): 525-536.
https://doi.org/10.1042/bj1130525
PMid:5807211 PMCid:PMC1184695

13. Egland P.G., Pelletier D.A., Dispensa M., Gibson J., Harwood C.S. A cluster of bacterial genes for anaerobic benzene ring biodegradation. Proc. Natl. Acad. Sci. USA, 1997; 94(12): 6484-6489.
https://doi.org/10.1073/pnas.94.12.6484
PMid:9177244 PMCid:PMC21076

14. Esteve-Núñez A., Caballero A., Ramos J.L. Biological degradation of 2,4,6-trinitrotoluene. Microbiol. Mol. Biol. Rev, 2001; 65: 335-52.
https://doi.org/10.1128/MMBR.65.3.335-352.2001
PMid:11527999 PMCid:PMC99030

15. Evans W.C., Fuchs G. Аnaerobic Degradation of Aromatic Compounds. Annual Review of Microbiology, 1988; 42: 289-317.
https://doi.org/10.1146/annurev.mi.42.100188.001445
PMid:3059996

16. Fetzner S. Bacterial dehalogenation. Appl. Microbiol. Biotech,1998; 50: 633-657.
https://doi.org/10.1007/s002530051346
PMid:9891928

17. Fu W., Oriel P. Degradation of 3-phenylpropionic acid by Haloferax sp. D1227. Extremophiles, 1999; 3(1): 45-53.
https://doi.org/10.1007/s007920050098
PMid:10086844

18. Gibson K.J., Gibson J. Potential early intermediates in anaerobic benzoate degradation by Rhodopseudomonas palustris. Appl. Environ. Microbiol, 1992; 58(2): 696-698.

19. Gibson J., Harwood C. S. Мetabolic diversity in aromatic compound utilization by anaerobic microbes. Annu. Rev. Microbiol, 2002; 56: 345-369.
https://doi.org/10.1146/annurev.micro.56.012302.160749
PMid:12142480

20. Harwood C.S., Burchhardt G., Herrmann H., Fuchs G. Anaerobic metabolism of aromatic compounds via the benzoyl-CoA pathway. FEMS Microbiology Reviews, 1998; 22(5): 439-458.
https://doi.org/10.1111/j.1574-6976.1998.tb00380.x

21. Härtel U., Ecker E., Koch J., Fuchs G., Linder D. Buckel W. Purification of glutaryl-CoA dehydrogenase from Pseudomonas sp., an enzyme involved in the anaerobic degradation of benzoate. Arch. Microbiol, 1993; 159(2): 174-181.
https://doi.org/10.1007/BF00250279
PMid:8439237

22. Heider J., Boll M., Breese K. et al. Differential induction of enzymes involved in anaerobic metabolism of aromatic compounds in the denitrifying bacterium Thauera aromatica. Arch Microbiol, 1998; 170(2): 120-131.
https://doi.org/10.1007/s002030050623
PMid:9683649

23. Jothimani Р., Kalaichelvan G., Bhaskaran A., Selvaseelan D.А., Ramasamy K. Anaerobic biodegradation of aromatic compounds. Indian Journal of Experimental Biology, 2003; 41: 1046-1067.

24. Karetnikova E.A., Zhirkova A.D. Degradation of phenols formed during lignin pyrolysis by microfungi of genera Trichoderma and Penicillium. Biology Bulletin, 2005; 32(5): 445-449. (In Russian)
https://doi.org/10.1007/s10525-005-0122-2

25. Khomenkov V.G., Shevelev A.B., Zhukov V.G., Zagustina N.A., Bezborodov A.M., Popov V.O. Organization of metabolic pathways and molecular-genetic mechanisms of xenobiotic degradation in microorganisms. Applied Biochemistry and Microbiology, 2008; 44(2): 133-152. (In Russian)
https://doi.org/10.1134/S0003683808020014

26. Koizumi Y., Kelly J.J., Nakagawa T. et al. Parallel characterization of anaerobic toluene- and ethylbenzene-degrading microbial consortia by PCR-denaturing gradient gel electrophoresis, RNA-DNA membrane hybridization, and DNA microarray technology. Appl. Environ. Microbiol, 2002; 68(7): 3215-3225.
https://doi.org/10.1128/AEM.68.7.3215-3225.2002
PMid:12088997 PMCid:PMC126768

27. Kolesnyk N. Toxic effect of pesticides on the biota of freshwater reservoirs of Ukraine (a review). Ribogospod. nauka Ukr, 2015; 4(34): 31-53. (In Ukrainian)
https://doi.org/10.15407/fsu2015.04.031

28. Koval V. А. The succinatedehydrogenase activity in the carp's fabrics in the conditions of winter starvation under the influence of toxins of different chemical nature. Scientific Issues Ternopil Volodymyr Hnatiuk National Pedagogical University. Series: Biology, 2017; 3(70): 83-87. (In Ukrainian)

29. Kushkevych I.V. Sulfate-reducing bacteria of human intestine. I. Dissimilatory sulfate reduction. Studia Biologica, 2012; 6(1): 149-180. (In Ukrainian)
https://doi.org/10.30970/sbi.0601.181

30. Kutsenko S.A. Fundamentals of toxicology / S.A. Kutsenko. Sankt-Peterburg, 2002. 395 р. (Іn Russian)

31. Küver J., Kulmer J., Jannsen S., Fischer U., Blotevogel K.-H. Isolation and characterization of a new spore-forming sulfate-reducing bacterium growing by complete oxidation of catechol. Arch. Microbiol, 1993; 159(3): 282-288.
https://doi.org/10.1007/BF00248485
PMid:8481092

32. Leys N.M., Ryngaert A., Bastiaens L., Verstraete W., Top E.M., Springael D. Occurrence and Phylogenetic Diversity of Sphingomonas Strains in Soils Contaminated with Polycyclic Aromatic Hydrocarbons. Appl. and Environ. Microbiol, 2004; 70(4): 1944-1955.
https://doi.org/10.1128/AEM.70.4.1944-1955.2004
PMid:15066784 PMCid:PMC383131

33. Lonergan D.J., Jenter H.L., Coates J.D., Phillips E.J., Schmidt T.M., Lovley D.R. Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. J. Bacteriol, 1996; 178: 2402-2408.
https://doi.org/10.1128/jb.178.8.2402-2408.1996
PMid:8636045

34. Lovley D.R. Cleaning up with genomics: applying molecular biology to bioremediation. Nature Rev. Microbiol, 2003; 1: 35-44.
https://doi.org/10.1038/nrmicro731
PMid:15040178

35. Madigan M.T., Jung D.O., Resnick S.M. Growth of the purple bacterium Rhodobacter capsulatus on the aromatic compound hippurate. Arch. Microbiol, 2001; 175(6): 462-465.
https://doi.org/10.1007/s002030100284
PMid:11491088

36. Moiseenko T.I. Water Ecotoxicology: Theoretical and Applied Aspects. Moscow: Nauka, 2009. 400 p. (In Russian)

37. Mufflera K., Leipolda D., Schellera M., Haasb C., Steingroewerb J., Bleyb T., Ekkehard H., Miratad M., Schraderd J., Ulbera R. Biotransformation of triterpenes. Process Biochemistry, 2011; 46(1): 1-15.
https://doi.org/10.1016/j.procbio.2010.07.015

38. Pavlenko M.I., Soroka Ya.M., Gvozdyak P.I., Kukhar V.P. Biological degradation of polycyclic aromatic hydrocarbons. Catalysis and petrochemistry, 2007; 15: 46-62. (In Ukrainian)

39. Pelletier D.A., Harwood C.S. 2-Ketocyclohexanecarboxyl coenzyme A hydrolase, the ring cleavage enzyme required for anaerobic benzoate degradation by Rhodopseudomonas palustris. J. Bacteriol, 1998; 180(9): 2330-2336.

40. Perrotta J.A., Harwood C.S. Anaerobic metabolism of cyclohex-1-ene-1-carboxylate, a proposed intermediate of benzoate degradation, by Rhodopseudomonas palustris. Appl. Environ. Microbiol, 1994; 60(6): 1775-1782.

41. Pirog T., Antonuk S., Sofilkanich A. Transformation of aromatic compounds in a surfactant by Rhodococcus erythropolis ІMV AL-5017, Acinetobacter calcoaceticus ІMV B-7241 and Nocardia vaccinii ІMV B-7405. Scientific Works of NUFT, 2016; 22(1): 7-13. (In Ukrainian)
https://doi.org/10.15407/biotech10.02.022

42. Rabus R., Hansen T., Widdel F. Dissimilatory Sulfate- and Sulfur-Reducing Prokaryotes // Dworkin M. et al. The Prokaryotes. An Evolving Electronic Resource for the Microbiological Community, 3rd edition. New York: Springer-Verlag, 2006; 659-768.
https://doi.org/10.1007/0-387-30742-7_22

43. Rabus R., Nordhaus R., Ludwig W., Widdel F. Complete oxidation of toluene under strictly anaerobic conditions by a new sulfate-reducing bacterium. Appl. Environ. Microbiol, 1993; 59: 1444-1451.

44. Salmanov M., Veliyev М., Babashly A., Bektashi N. Biodegradation of halogen structured aromatic associations with bacteria isolated from Azerbaijan costs of Caspian. Bulletin of the Moscow State Regional University. Series: Natural Sciences, 2010; 2: 45-50. (In Russian)

45. Schink B., Philipp B., Müller J. Anaerobic Degradation of Phenolic Compounds. Naturwissenschaften, 2000; 87(1): 12-23.
https://doi.org/10.1007/s001140050002
PMid:10663127

46. Schöcke L., Schink B. Energetics of methanogenic benzoate degradation by Syntrophus gentianae in syntrophic coculture. Microbiology, 1997; 143: 2345-2351.
https://doi.org/10.1099/00221287-143-7-2345

47. Song B., Young L.Y., Palleroni N.J. Identification of denitrifier strain T1 as Thauera aromatica and proposal for emendation of the genus Thauera definition. International Journal of Systematic and Evolutionary Microbiology, 1998; 48: 889-894.
https://doi.org/10.1099/00207713-48-3-889
PMid:9734042

48. Springer N., Ludwig W., Philipp B., Schink B. Azoarcus anaerobius sp. nov., a resorcinol-degrading, strictly anaerobic, denitrifying bacterium. International Journal of Systematic and Evolutionary Microbiology, 1998; 48: 953-956.
https://doi.org/10.1099/00207713-48-3-953
PMid:9734051

49. Tarvin D., Buswell A. Тhe Methane Fermentation of Organic Acids and Carbohydrates. J. Am. Chem. Soc, 1934; 56(8): 1751-1755.
https://doi.org/10.1021/ja01323a030

50. Timergazina I.F., Perekhodova L.S. To the problem of biological oxidation of oil and petroleum products using hydrocarbon-oxidizing microorganisms. Petroleum Geology - Theoretical and Applied Studies, 2012; 7(1): 1-28. (In Russian)

51. Tor J.M., Lovley D.R. Anaerobic degradation of aromatic compounds coupled to Fe(III) reduction by Ferroglobus placidus. Environ. Microbiol, 2001; 3(4): 281-287.
https://doi.org/10.1046/j.1462-2920.2001.00192.x
PMid:11359514

52. Tyagi M., da Fonseca M.M., de Carvalho C.C. Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation, 2011; 22(2): 231-241.
https://doi.org/10.1007/s10532-010-9394-4
PMid:20680666

53. Van Schie P.M., Young L.Y. Isolation and characterization of phenol-degrading denitrifying bacteria. Appl. Environ. Microbiol, 1998; 64: 2432-2438.

54. Warikoo V., McInerney M.J., Robinson J.A., Suflita J.M. Interspecies acetate transfer influences the extent of anaerobic benzoate degradation by syntrophic consortia. Appl. Environ. Microbiol, 1996; 62: 26-32.
https://doi.org/10.2172/451224

55. Watanabe K. Microorganisms relevant to bioremediation. Current Opinion in Biotechnology, 2001; 12(3): 237-241.
https://doi.org/10.1016/S0958-1669(00)00205-6

56. Widada J., Nojiri H., Kasuga K., Yoshida T., Habe H. Molecular detection and diversity of polycyclic aromatic hydrocarbon-degrading bacteria isolated from geographically diverse sites. Appl. Microbiol. and Biotechnol, 2002; 58(2): 202-209.
https://doi.org/10.1007/s00253-001-0880-9

57. Yang-Chun Y., Jian-Jiang Z. Recent advances in biodegradation in China: New microorganisms and pathways, biodegradation engineering, and bioenergy from pollutant biodegradation. Process Biochemistry, 2010; 45(12): 1937-1943.
https://doi.org/10.1016/j.procbio.2010.04.009


Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 N. S. Verkholiak, T. B. Peretyatko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.