UTILIZATION OF AROMATIC COMPOUNDS BY BACTERIA. І. AEROBIC AND ANAEROBIC DESTRUCTION
DOI: http://dx.doi.org/10.30970/sbi.1202.566
Abstract
This review summarizes current information on the extent of environmental pollution by xenobiotics of aromatic nature, and their toxic effects on living organisms. Phenols, monocyclic (benzene, toluene, xylene etc) and polycyclic aromatic hydrocarbons (naphthalene, anthracene, phenanthrene, biphenуls, pyrene, benzpyrene, pyridine etc.) are the most dangerous pollutant aromatic compounds. A variety of microorganisms capable to destroy the aromatic compounds is described. The biodegradation of aromatic pollutants is carried out by denitrifying, sulfate-reducing, photosynthetic, fermentation, iron-reducing, acetogenic bacteria and methanogens. The paper analyzes and generalizes the ways of decomposition of compounds of aromatic nature under bacterial aerobic and anaerobic conditions, describes the peripheral ways of oxidation of aromatic compounds and their regulation, examines the ability of microorganisms to use substituents in the benzene ring as a source of carbon and nitrogen. The processes of aerobic and anaerobic biodegradation of aromatic compounds have common particularities, that are the key intermediates formation. These intermediates are involved into the central metabolism of the cell due to the activity of metabolic pathways of various groups of microorganisms. Under the aerobic conditions, the rupture of benzene ring can occur between two successively connected carbon atoms carrying hydroxyl groups (ortho-cleavage), or on other C-C bonds of the nucleus in meta-position (meta-cleavage). The central metabolic pathways provide a formation of intermediate compounds of the Krebs cycle. Benzoyl-CoA is a central intermediate of decomposition of aromatic xenobiotics under anaerobic conditions. In this review, different variants of benzoyl-CoA pathway for the degradation of aromatic compounds by bacteria are considered. Due to the destruction of aromatic compounds by various microorganisms, a large number of intermediate metabolites are formed. They are further degraded by bacteria of various ecological trophic groups. At the result, complete decomposition of the aromatic compounds occurs. The ability of microorganisms to decompose xenobiotics enables solving a number of environmental problems associated with both the use of chemical pesticides and the discharge of untreated industrial wastewater.
Keywords
Full Text:
PDF (Українська)References
1. Al-Shammari F.D.Kh., Vasilenko S.L., Titok M.A. Search for effective strains-destructors of aromatic hydrocarbons. Vestnik BSU. Series 2: Chemistry. Biology. Geography, 2010; 2(1): 35-39. (In Russian) | |
| |
2. Beller H.R., Spormann A.M., Sharma P.K., Cole J.R., Reinhard M. Isolation and characterisation of a novel toluene-degrading sulfate-reducing bacterium. Appl. Environ. Microbiol, 1996; 62: 1188-1196. | |
| |
3. Bernstein A., Adar E., Nejidat A., Ronen Z. Isolation and characterization of RDX-degrading Rhodococcus species from a contaminated aquifer. Biodegradation, 2011; 22(5): 997-1005. | |
| |
4. Boll M., Fuchs G. Benzoyl-coenzyme A reductase (dearomatising), a key enzyme of anaerobic aromatic metabolism. ATP dependence of the reaction, purification and some properties of the enzyme from Thauera aromatica strain K172. Eur. J. Biochem, 1995; 234: 921-933. | |
| |
5. Boll M., Fuchs G. Identification and characterization of the natural electron donor ferredoxin and of FAD as a possible prosthetic group of benzoyl-CoA reductase (dearomatizing), a key enzyme of anaerobic aromatic metabolism. Eur. J. Biochem, 1998; 251(3): 946-954. | |
| |
6. Chung W.K., King G.M. Isolation, Characterization, and Polyaromatic Hydrocarbon Degradation Potential of Aerobic Bacteria from Marine Macrofaunal Burrow Sediments and Description of Lutibacterium anuloederans gen. nov., sp. nov., and Cycloclasticus spirillensus sp. nov. Appl. and Environ. Microbiol, 2001; 67(12): 5585-5592. | |
| |
7. Cuevaa C., Moreno-Arribasa M.V., Martín-Álvareza P.J. et al. Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. Research in Microbiology, 2010; 161(5): 372-382. | |
| |
8. Daane L.L., Harjono I., Zylstra G.J., Haggblom M.M. Isolation and Characterization of Polycyclic Aromatic Hydrocarbon-Degrading Bacteria Associated with the Rhizosphere of Salt Marsh Plants. Appl. and Environ. Microbiol, 2001; 67(6): 2683- 2691. | |
| |
9. Dangel W., Brackmann R., Lack A., Mohamed M., Koch, J., Oswald B., Seyfried B., Tschech A., Fuchs G. Differential expression of enzyme activities initiating anoxic metabolism of various aromatic compounds via benzoyl-CoA. Arch. Microbiol, 1991; 155(3): 256-262. | |
| |
10. Defnoun S., Labat M., Ambrosio M., Garcia J.L., Patel B.K. Papillibacter cinnamivorans gen. nov., sp. nov., a cinnamate-transforming bacterium from a shea cake digester. Int. J. Syst. Evol. Microbiol, 2000; 50:1221-1228. | |
| |
11. Dudnik S.V., Yevtushenko M.Yu. Water toxicology: basic theoretical positions and their practical application. K.: View of the Ukrainian Phytosociological Center, 2013. 297 p. (In Ukrainian) | |
| |
12. Dutton P.L., Evans W.C. The metabolism of aromatic compounds by Rhodopseudomonas palustris. A new, reductive, method of aromatic ring metabolism. Biochemical Journal, 1969; 113(3): 525-536. | |
| |
13. Egland P.G., Pelletier D.A., Dispensa M., Gibson J., Harwood C.S. A cluster of bacterial genes for anaerobic benzene ring biodegradation. Proc. Natl. Acad. Sci. USA, 1997; 94(12): 6484-6489. | |
| |
14. Esteve-Núñez A., Caballero A., Ramos J.L. Biological degradation of 2,4,6-trinitrotoluene. Microbiol. Mol. Biol. Rev, 2001; 65: 335-52. | |
| |
15. Evans W.C., Fuchs G. Аnaerobic Degradation of Aromatic Compounds. Annual Review of Microbiology, 1988; 42: 289-317. | |
| |
16. Fetzner S. Bacterial dehalogenation. Appl. Microbiol. Biotech,1998; 50: 633-657. | |
| |
17. Fu W., Oriel P. Degradation of 3-phenylpropionic acid by Haloferax sp. D1227. Extremophiles, 1999; 3(1): 45-53. | |
| |
18. Gibson K.J., Gibson J. Potential early intermediates in anaerobic benzoate degradation by Rhodopseudomonas palustris. Appl. Environ. Microbiol, 1992; 58(2): 696-698. | |
| |
19. Gibson J., Harwood C. S. Мetabolic diversity in aromatic compound utilization by anaerobic microbes. Annu. Rev. Microbiol, 2002; 56: 345-369. | |
| |
20. Harwood C.S., Burchhardt G., Herrmann H., Fuchs G. Anaerobic metabolism of aromatic compounds via the benzoyl-CoA pathway. FEMS Microbiology Reviews, 1998; 22(5): 439-458. | |
| |
21. Härtel U., Ecker E., Koch J., Fuchs G., Linder D. Buckel W. Purification of glutaryl-CoA dehydrogenase from Pseudomonas sp., an enzyme involved in the anaerobic degradation of benzoate. Arch. Microbiol, 1993; 159(2): 174-181. | |
| |
22. Heider J., Boll M., Breese K. et al. Differential induction of enzymes involved in anaerobic metabolism of aromatic compounds in the denitrifying bacterium Thauera aromatica. Arch Microbiol, 1998; 170(2): 120-131. | |
| |
23. Jothimani Р., Kalaichelvan G., Bhaskaran A., Selvaseelan D.А., Ramasamy K. Anaerobic biodegradation of aromatic compounds. Indian Journal of Experimental Biology, 2003; 41: 1046-1067. | |
| |
24. Karetnikova E.A., Zhirkova A.D. Degradation of phenols formed during lignin pyrolysis by microfungi of genera Trichoderma and Penicillium. Biology Bulletin, 2005; 32(5): 445-449. (In Russian) | |
| |
25. Khomenkov V.G., Shevelev A.B., Zhukov V.G., Zagustina N.A., Bezborodov A.M., Popov V.O. Organization of metabolic pathways and molecular-genetic mechanisms of xenobiotic degradation in microorganisms. Applied Biochemistry and Microbiology, 2008; 44(2): 133-152. (In Russian) | |
| |
26. Koizumi Y., Kelly J.J., Nakagawa T. et al. Parallel characterization of anaerobic toluene- and ethylbenzene-degrading microbial consortia by PCR-denaturing gradient gel electrophoresis, RNA-DNA membrane hybridization, and DNA microarray technology. Appl. Environ. Microbiol, 2002; 68(7): 3215-3225. | |
| |
27. Kolesnyk N. Toxic effect of pesticides on the biota of freshwater reservoirs of Ukraine (a review). Ribogospod. nauka Ukr, 2015; 4(34): 31-53. (In Ukrainian) | |
| |
28. Koval V. А. The succinatedehydrogenase activity in the carp's fabrics in the conditions of winter starvation under the influence of toxins of different chemical nature. Scientific Issues Ternopil Volodymyr Hnatiuk National Pedagogical University. Series: Biology, 2017; 3(70): 83-87. (In Ukrainian) | |
| |
29. Kushkevych I.V. Sulfate-reducing bacteria of human intestine. I. Dissimilatory sulfate reduction. Studia Biologica, 2012; 6(1): 149-180. (In Ukrainian) | |
| |
30. Kutsenko S.A. Fundamentals of toxicology / S.A. Kutsenko. Sankt-Peterburg, 2002. 395 р. (Іn Russian) | |
| |
31. Küver J., Kulmer J., Jannsen S., Fischer U., Blotevogel K.-H. Isolation and characterization of a new spore-forming sulfate-reducing bacterium growing by complete oxidation of catechol. Arch. Microbiol, 1993; 159(3): 282-288. | |
| |
32. Leys N.M., Ryngaert A., Bastiaens L., Verstraete W., Top E.M., Springael D. Occurrence and Phylogenetic Diversity of Sphingomonas Strains in Soils Contaminated with Polycyclic Aromatic Hydrocarbons. Appl. and Environ. Microbiol, 2004; 70(4): 1944-1955. | |
| |
33. Lonergan D.J., Jenter H.L., Coates J.D., Phillips E.J., Schmidt T.M., Lovley D.R. Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. J. Bacteriol, 1996; 178: 2402-2408. | |
| |
34. Lovley D.R. Cleaning up with genomics: applying molecular biology to bioremediation. Nature Rev. Microbiol, 2003; 1: 35-44. | |
| |
35. Madigan M.T., Jung D.O., Resnick S.M. Growth of the purple bacterium Rhodobacter capsulatus on the aromatic compound hippurate. Arch. Microbiol, 2001; 175(6): 462-465. | |
| |
36. Moiseenko T.I. Water Ecotoxicology: Theoretical and Applied Aspects. Moscow: Nauka, 2009. 400 p. (In Russian) | |
| |
37. Mufflera K., Leipolda D., Schellera M., Haasb C., Steingroewerb J., Bleyb T., Ekkehard H., Miratad M., Schraderd J., Ulbera R. Biotransformation of triterpenes. Process Biochemistry, 2011; 46(1): 1-15. | |
| |
38. Pavlenko M.I., Soroka Ya.M., Gvozdyak P.I., Kukhar V.P. Biological degradation of polycyclic aromatic hydrocarbons. Catalysis and petrochemistry, 2007; 15: 46-62. (In Ukrainian) | |
| |
39. Pelletier D.A., Harwood C.S. 2-Ketocyclohexanecarboxyl coenzyme A hydrolase, the ring cleavage enzyme required for anaerobic benzoate degradation by Rhodopseudomonas palustris. J. Bacteriol, 1998; 180(9): 2330-2336. | |
| |
40. Perrotta J.A., Harwood C.S. Anaerobic metabolism of cyclohex-1-ene-1-carboxylate, a proposed intermediate of benzoate degradation, by Rhodopseudomonas palustris. Appl. Environ. Microbiol, 1994; 60(6): 1775-1782. | |
| |
41. Pirog T., Antonuk S., Sofilkanich A. Transformation of aromatic compounds in a surfactant by Rhodococcus erythropolis ІMV AL-5017, Acinetobacter calcoaceticus ІMV B-7241 and Nocardia vaccinii ІMV B-7405. Scientific Works of NUFT, 2016; 22(1): 7-13. (In Ukrainian) | |
| |
42. Rabus R., Hansen T., Widdel F. Dissimilatory Sulfate- and Sulfur-Reducing Prokaryotes // Dworkin M. et al. The Prokaryotes. An Evolving Electronic Resource for the Microbiological Community, 3rd edition. New York: Springer-Verlag, 2006; 659-768. | |
| |
43. Rabus R., Nordhaus R., Ludwig W., Widdel F. Complete oxidation of toluene under strictly anaerobic conditions by a new sulfate-reducing bacterium. Appl. Environ. Microbiol, 1993; 59: 1444-1451. | |
| |
44. Salmanov M., Veliyev М., Babashly A., Bektashi N. Biodegradation of halogen structured aromatic associations with bacteria isolated from Azerbaijan costs of Caspian. Bulletin of the Moscow State Regional University. Series: Natural Sciences, 2010; 2: 45-50. (In Russian) | |
| |
45. Schink B., Philipp B., Müller J. Anaerobic Degradation of Phenolic Compounds. Naturwissenschaften, 2000; 87(1): 12-23. | |
| |
46. Schöcke L., Schink B. Energetics of methanogenic benzoate degradation by Syntrophus gentianae in syntrophic coculture. Microbiology, 1997; 143: 2345-2351. | |
| |
47. Song B., Young L.Y., Palleroni N.J. Identification of denitrifier strain T1 as Thauera aromatica and proposal for emendation of the genus Thauera definition. International Journal of Systematic and Evolutionary Microbiology, 1998; 48: 889-894. | |
| |
48. Springer N., Ludwig W., Philipp B., Schink B. Azoarcus anaerobius sp. nov., a resorcinol-degrading, strictly anaerobic, denitrifying bacterium. International Journal of Systematic and Evolutionary Microbiology, 1998; 48: 953-956. | |
| |
49. Tarvin D., Buswell A. Тhe Methane Fermentation of Organic Acids and Carbohydrates. J. Am. Chem. Soc, 1934; 56(8): 1751-1755. | |
| |
50. Timergazina I.F., Perekhodova L.S. To the problem of biological oxidation of oil and petroleum products using hydrocarbon-oxidizing microorganisms. Petroleum Geology - Theoretical and Applied Studies, 2012; 7(1): 1-28. (In Russian) | |
| |
51. Tor J.M., Lovley D.R. Anaerobic degradation of aromatic compounds coupled to Fe(III) reduction by Ferroglobus placidus. Environ. Microbiol, 2001; 3(4): 281-287. | |
| |
52. Tyagi M., da Fonseca M.M., de Carvalho C.C. Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation, 2011; 22(2): 231-241. | |
| |
53. Van Schie P.M., Young L.Y. Isolation and characterization of phenol-degrading denitrifying bacteria. Appl. Environ. Microbiol, 1998; 64: 2432-2438. | |
| |
54. Warikoo V., McInerney M.J., Robinson J.A., Suflita J.M. Interspecies acetate transfer influences the extent of anaerobic benzoate degradation by syntrophic consortia. Appl. Environ. Microbiol, 1996; 62: 26-32. | |
| |
55. Watanabe K. Microorganisms relevant to bioremediation. Current Opinion in Biotechnology, 2001; 12(3): 237-241. | |
| |
56. Widada J., Nojiri H., Kasuga K., Yoshida T., Habe H. Molecular detection and diversity of polycyclic aromatic hydrocarbon-degrading bacteria isolated from geographically diverse sites. Appl. Microbiol. and Biotechnol, 2002; 58(2): 202-209. | |
| |
57. Yang-Chun Y., Jian-Jiang Z. Recent advances in biodegradation in China: New microorganisms and pathways, biodegradation engineering, and bioenergy from pollutant biodegradation. Process Biochemistry, 2010; 45(12): 1937-1943. |
Refbacks
- There are currently no refbacks.
Copyright (c) 2018 N. S. Verkholiak, T. B. Peretyatko
This work is licensed under a Creative Commons Attribution 4.0 International License.