DISSIMILATORY SULFATE REDUCTION IN THE INTESTINAL SULFATE-REDUCING BACTERIA

I. V. Kushkevych


DOI: http://dx.doi.org/10.30970/sbi.1001.560

Abstract


The study of the intestinal sulfate-reducing bacteria, the process of dissimilatory sulfate reduction and accumulation of hydrogen sulfide, as well as their role in the inflammatory bowel diseases, including ulcerative colitis, in animals and human have increa­singly attracted the attention of scientists. New opportunities for studying inflammatory bowel disease and the assessment of the effectiveness of its treatment is an urgent problem of modern biology and medicine. In this review, brief characteristics of these bacteria and their mechanism of dissimilatory sulfate reduction were described based on modern literature data and own research. The characteristics of substrates for intestinal sulfate-reducing bacteria and the thermodynamic properties of their electron donors were also described. Special attention was paid to the mechanism and stages of sulfate dissimilation including role of enzymes involved in this process. Based on our results, general scheme of dissimilatory sulfate reduction sho­wing the activity of each enzyme of the process was demonstrated. The described physiological and biochemical parameters are important for a more detailed understanding of sulfate dissimilation in the human and animal bowel, as well as studying the mechanisms of action of the antimicrobial prophylactics and the therapy against specific components involved in the pathogenesis of the disease. It is also essential for understanding the mechanisms of bowel diseases and for evaluating the effectiveness of its therapy.


Keywords


sulfate reducing bacteria, dissimilatory sulfate reduction, hydrogen sulfide, intestinal microflora

Full Text:

PDF

References


1. Barton L.L., Hamilton W.A. Sulphate-Reducing Bacteria. Environmental and Engineered Systems. Cambridge University Press, 2010; 553 p.

2. Badziong W., Thauer R. Growth yields and growth rates of Desulfovibrio vulgaris (Marburg) growing on hydrogen plus sulphate and hydrogen plus thiosulphate as the sole energy sour­ces. Arch. Microbiol, 1978; 117: 209-214.
https://doi.org/10.1007/BF00402310
PMid:28099

3. Broco M., Rousset M., Oliveira S., Rodrigues-Pousada C. Deletion of flavoredoxin gene in Desulfovibrio gigas reveals its participation in thiosulphate reduction. FEBS Lett, 2005; 579: 4803-4807.
https://doi.org/10.1016/j.febslet.2005.07.044
PMid:16099456

4. Brenner D.J., Krieg N.R., Staley J.T., Garrity G.M. Bergey's manual of Systematic Bacteriology. Vol. Two: The Proteobacteria, Part C: The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Second Edition USA, 2005; 1388.
https://doi.org/10.1007/0-387-28021-9

5. Deplancke B., Finster K., Graham W. et al. Gastrointestinal and microbial responses to sulphate-supplemented drinking water in mice. Exp. Biol. Med, 2003; 228: 424-433.
https://doi.org/10.1177/153537020322800413
PMid:12671187

6. Fite A., Macfarlane G.T., Cummings J.H. et al. Identification and quantitation of mucosal and faecal desulfovibrios using real-time PCR. Gut, 2004; 53: 523-529.
https://doi.org/10.1136/gut.2003.031245
PMid:15016746 PMCid:PMC1774019

7. Forzi L., Koch J., Guss A.M. et al. Assignment of the 4Fe-4S clusters of ech hydrogenase from Methanosarcina barkeria to individual subunits via the characterization of site-directed mutants. FEBS J, 2005; 272: 4741-4753.
https://doi.org/10.1111/j.1742-4658.2005.04889.x
PMid:16156794

8. Frederiksen T.M., Finster K. Sulfite-oxido-reductase is involved in the oxidation of sulfite in Desulfocapsa sulfoexigens during disproportionation of thiosulphate and elemental sulfur. Biodegradation, 2003; 14: 189-198.
https://doi.org/10.1023/A:1024255830925

9. Friedrich M.W. Phylogenetic analysis reveals multiple lateral transfers of adenosine-5'-phosphosulphate reductase genes among sulphate-reducing microorganisms. J. Bacteriol, 2002; 184: 278-289.
https://doi.org/10.1128/JB.184.1.278-289.2002
PMid:11741869 PMCid:PMC134748

10. Fritz G., Buchert T., Kroneck P.M.H. The Function of the [4Fe-4S] clusters and FAD in bacterial and archaeal adenylylsulfate reductases. J. Biol. Chem, 2002; 277: 26066-26073.
https://doi.org/10.1074/jbc.M203397200
PMid:12006599

11. Fritz G., Roth A., Schiffer A. et al. Structure of adenylylsulfate reductase from the hyperthermophilic Archaeoglobus fulgidus at 1.6-A resolution. Proc. Natl. Acad. Sci. USA, 2002; 99: 1836-1841.
https://doi.org/10.1073/pnas.042664399
PMid:11842205 PMCid:PMC122280

12. Gibson G.R., Cummings J.H., Macfarlane G.T. Growth and activities of sulphate-reducing bacteria in gut contents from healthysubjects and patients with ulcerative colitis. FEMS Mic­robiol. Ecol, 1991; 86: 103-112.
https://doi.org/10.1111/j.1574-6968.1991.tb04799.x

13. Gibson G.R., Macfarlane S., Macfarlane G.T. Metabolic interactions involving sulphate-reducing and methanogenic bacteria in the human large intestine. FEMS Microbiol. Ecol, 1993; 12: 117-125.
https://doi.org/10.1111/j.1574-6941.1993.tb00023.x

14. Goenka A., Voordouw J.K., Lubitz W. et al. Construction of a NiFe-hydrogenase deletion mutant of Desulfovibrio vulgaris Hildenborough. Biochem. Soc. Trans, 2005; 33: 59-60.
https://doi.org/10.1042/BST0330059
PMid:15667264

15. Goldstein E.J.C., Citron D.M., Peraino V.A., Cross S.A. Desulfovibrio desulfuricans bacteremia and review of human Desulfovibrio infections. J. Clin. Microbiol, 2003; 41: 2752-2754.
https://doi.org/10.1128/JCM.41.6.2752-2754.2003
PMid:12791922 PMCid:PMC156571

16. Harmsen H.J.M., Raangs G.C., He T. et al. Extensive set of 16S rRNA-based probes for detection of bacteria in human feces. Appl. Environ. Microbiol, 2002; 68: 2982-2990.
https://doi.org/10.1128/AEM.68.6.2982-2990.2002
PMid:12039758 PMCid:PMC123985

17. Head K.A., Jurenka J.S. Inflammatory bowel disease part 1: Ulcerative colitis. А pathophysio­logy and coventional and alternative treatment options. Alt. Med. Rev, 2003; 8: 247-283.

18. Hedderich R. Energy-converting NiFe hydrogenases from archaea and extremophiles: ancestors of complex I. J. Bioenerg. Biomembr, 2004; 36: 65-75.
https://doi.org/10.1023/B:JOBB.0000019599.43969.33
PMid:15168611

19. Kushkevych I.V. Sulfate-reducing bacteria of the human intestine. I. Dissimilatory sulfate reduction. Studia Biologica, 2012; 6(1): 149-180.
https://doi.org/10.30970/sbi.0601.181

20. Kushkevych I.V. Sulfate-reducing bacteria of the human intestine. II. The role in the diseases development. Studia Biologica, 2012; 6(2): 221-250.
https://doi.org/10.30970/sbi.0602.207

21. Kushkevych I.V. Dissimilatory sulfate reduction by various Desulfovibrio sp. strains of the human intestine. Microbiol. and Biotechnol, 2013; 3(23): 50-63.
https://doi.org/10.18524/2307-4663.2013.3(23).48939

22. Kushkevych I.V., Moroz O.M. Growth of various strains of sulfate-reducing bacteria of human large intestine. Studia Biologica, 2012; 6(3): 115-124.
https://doi.org/10.30970/sbi.0603.243

23. Kushkevych I.V., Beno Y.J. Cluster and Cross-correlation Analysis of some Physiological Parameters by Various Desulfovibrio sp. and Desulfomicrobium sp. Bacterial Strains of the Human Intestine. SOJ Microbiol. & Inf. Dis, 2013; 1: 1-9.
https://doi.org/10.15226/sojmid.2013.00107

24. Kushkevych I.V. Growth of the Desulfomicrobium sp. strains, their sulfate- and lactate usage, production of sulfide and acetate by the strains isolated from the human large intestine. Mic­robiol. Discovery, 2014; 2: 1-8.
https://doi.org/10.7243/2052-6180-2-1

25. Kushkevych I.V. Identification of sulfate-reducing bacteria strains of the human large intestine. Studia Biologica, 2013; 7(3): 115-124.
https://doi.org/10.30970/sbi.0703.312

26. Kushkevych I.V., Bartoš M., Bartošová L. Sequence analysis of the 16S rRNA gene of sulfate-reducing bacteria isolated from human intestine. Int. J. Curr. Microbiol. Appl. Sci, 2014; 3(2): 239-248.

27. Kushkevych I.V. Effect of hydrogen sulfide at differential concentrations on the process of dissimilatory sulfate reduction by the bacteria Desulfovibrio piger. Sci Notes of Ternopil Nat. Ped. Univ. Series Biol, 2013; 4(57): 74-80.

28. Kushkevych I.V. Dose-dependent effect of electron acceptor and donor on dissimilatory sulfate reduction by bacteria Desulfovibrio piger Vib-7 of human intestine. Studia Biologica, 2014; 8(1): 103-116.
https://doi.org/10.30970/sbi.0801.313

29. Kushkevych I.V., Hnatush S.O., Mutenko H.V. Glutathione level of Desulfovibrio desulfu­ricans ІМV K-6 under the influence of heavy metal salts. Ukr. Biochem. J, 2011; 83(6): 105-110.

30. Kushkevych I.V., Antonyak H.L. New Desulfovibrio sp. strains isolated from human intestine and their dissimilatory sulfate reduction. Int. Cong. Med. Sci. (Sofia, Bulgaria), Abstract book, 2014; 22.

31. Kushkevych I.V., Antonyak H.L. Activity of periplasmic hydrogenase of the intestinal sulfate-reducing bacteria. The Animal Biol. J, 2014;16(2): 35-41.

32. Kushkevych I.V. Dissimilatory sulfate reduction in bacterium Desulfovibrio piger Vib-7 under the effect of medium with differential acidity. American J. Microbiol. & Biotechnol, 2014; 1(2): 49-55.
https://doi.org/10.2174/1874285801509010055
PMid:26668663 PMCid:PMC4676506

33. Kushkevych I.V. The effect of hydrogen sulfide on the dissimilatory sulfate reduction of the intestinal bacteria Desulfovibrio piger. Int. Cong. Med. Sci. (Sofia, Bulgaria). Abstract book, 2015; 80.

34. Kushkevych I.V., Fafula R.V. Dissimilatory sulfite reductase in cell-free extracts of intestinal sulfate-reducing bacteria. Studia Biologica, 2014; 8(2): 101-112.
https://doi.org/10.30970/sbi.0802.353

35. Kushkevych I., Bolis M., Bartoš M. Model-based characterization of the kinetic parameters of dissimilatory sulfate reduction under the effect of different initial density of Desulfovibrio piger Vib-7 bacterial cells. The Open Microbiol. J, 2015; 9: 55-69.
https://doi.org/10.2174/1874285801509010055
PMid:26668663 PMCid:PMC4676506

36. Kushkevych I., Fafula R., Parák T., Bartoš M. Activity of Na+/K+-activated Mg2+-dependent ATP hydrolase in the cell-free extracts of the sulfate-reducing bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Acta Vet. Brno, 2015; 84(1): 3-12.
https://doi.org/10.2754/avb201585010003

37. Kushkevych I.V., Fafula R.V., Antonyak H.L. Catalase Activity of Sulfate-Reducing Bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9 Isolated from Human Large Intestine. Microbes and Health J, 2014; 3(1): 15-20.
https://doi.org/10.3329/mh.v3i1.19776

38. Kushkevych I.V., Antonyak H.L., Fafula R.V. Superoxide dismutase activity of the sulfate-reducing bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Microbiol. and Biotech, 2014; 4(28): 26-35.
https://doi.org/10.18524/2307-4663.2014.4(28).48409

39. Kushkevych I.V. Kinetic characteristics of pyrophosphatase of the sulfate-reducing bacteria from human intestine. Sci. J. Visnyk Lviv Uni. Biol. Series, 2014; 68: 158-166.

40. Kushkevych I.V. Lactate dehydrogenase activity in cell-free extracts of sulfate-reducing bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Sci. J. Visnyk Lviv Uni. Biol. Series, 2014; 67: 243-251.

41. Kushkevych I.V. Activity and kinetic properties of adenosine 5′-phosphosulfate reductase in the intestinal sulfate-reducing bacteria. Microbiol. and Biotechnol, 2014; 2(26): 54-63.
https://doi.org/10.18524/2307-4663.2014.2(26).48259

42. Kushkevych I.V., Antonyak H.L., Bartoš M. Kinetic properties of dissimilatory adenosine triphosphate sulfurylase of intestinal sulfate-reducing bacteria. Ukr. Biochem. J, 2014; 86(6): 129-138.
https://doi.org/10.15407/ubj86.06.129
PMid:25816613

43. Kushkevych I.V. Activity and Kinetic Properties of Phosphotransacetylase From Intestinal Sulfate-Reducing Bacteria. Acta Biochem. Polonica, 2015; 62(1): 103-108.
https://doi.org/10.18388/abp.2014_845
PMid:25781158

44. Kushkevych I.V. Kinetic Properties of Pyruvate Ferredoxin Oxidoreductase of Intestinal Sulfate-Reducing Bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Pol. J. Microbiol, 2015; 64(2): 107-114.

45. Kushkevych I.V. Acetate kinase Activity and Kinetic Properties of the Enzyme in Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9 Intestinal Bacterial Strains. The Open Microbiol. J, 2014; 8: 138-143.
https://doi.org/10.2174/1874285801408010138
PMid:25598851 PMCid:PMC4293740

46. Kushkevych I.V. Etiological role of sulfate-reducing bacteria in the development of inflammatory bowel diseases and ulcerative colitis. American J. Inf. Dis. & Microbiol, 2014; 2(3): 63-73.
https://doi.org/10.12691/ajidm-2-3-5

47. Lemos R.S., Gomes C.M., Santana M. et al. The ''strict'' anaerobe Desulfovibrio gigas contains a membrane-bound oxygen respiratory chain. J. Inorg. Biochem, 2001; 86: 314.
https://doi.org/10.1016/S0014-5793(01)02399-7

48. Loubinoux J., Bisson-Boutelliez C., Miller N., Le Faou A.E. Isolation of the provisionally named Desulfovibrio fairfieldensis from human periodontal pockets. Oral Microbiol. Immunol, 2002; 17: 321-323.
https://doi.org/10.1034/j.1399-302X.2002.170510.x
PMid:12354215

49. Loubinoux J., Bronowicji J.-P., Pereira I.A. et. al. Sulphate-reducing bacteria in human feces and their association with inflammatory diseases. FEMS Microbiol. Ecol, 2002; 40: 107-112.
https://doi.org/10.1016/S0168-6496(02)00201-5

50. Loubinoux J., Jaulhac B., Piemont Y. et al. Isolation of sulphate-reducing bacteria from human thoracoabdominal pus. J. Clin. Microbiol, 2003; 41: 1304-1306.
https://doi.org/10.1128/JCM.41.3.1304-1306.2003
PMid:12624073 PMCid:PMC150275

51. Loubinoux J., Mory F., Pereira I.A., Le Faou A.E. Bacteremia caused by a strain of Desulfovibrio related to the provisionally named Desulfovibrio fairfieldensis. J. Clin. Microbiol, 2000; 38: 931-934.

52. Loubinoux J., Valente F.M., Pereira A.C. et al. Reclassification of the only species of the genus Desulfomonas, Desulfomonas pigra, as Desulfovibrio piger comb. nov. Int. J. Syst. Evol. Microbiol, 2002; 52: 1305-1308.
https://doi.org/10.1099/ijs.0.02175-0

53. Madigan M.T. , Martinko J.M., Brock T.D. Brock. Biology of Microorganisms. Publisher: Pearson Prentice Hall, 11th ed, 2006; 992 P.

54. Matias P.M., Pereira I.A., Soares C.M., Carrondo M.A. Sulphate respiration from hydrogen in Desulfovibrio bacteria: a structural biology overview. Prog. Biophys. Mol. Biol, 2005; 89: 292-329.
https://doi.org/10.1016/j.pbiomolbio.2004.11.003
PMid:15950057

55. McDougall R., Robson J., Paterson D., Tee W. Bacteremia Caused by a Recently Described Novel Desulfovibrio Species. J. Clin. Microbiol, 1997; 35(7): 1805-1808.

56. Meuer J., Kuettner H.C., Zhang J.K. et al. Genetic analysis of the archaeon Methanosarcina barkeri Fusaro reveals a central role for Ech hydrogenase and ferredoxin in methanogenesis and carbon fixation. Proc. Natl. Acad. Sci. USA, 2002; 99: 5632-5637.
https://doi.org/10.1073/pnas.072615499
PMid:11929975 PMCid:PMC122822

57. Möller-Zinkhan D., Thauer R.K. Anaerobic lactate oxidation to 3CO2 by Archaeoglobus fulgidus via the carbon monoxide dehydrogenase pathway: demonstration of the acetyl-CoA carbon-carbon cleavage reaction in cell extracts Arch. Microbiol, 1990; 153: 215-218.
https://doi.org/10.1007/BF00249070

58. Odom J.M., Peck H.D. Hydrogenase, electron-transfer proteins, and energy coupling in the sulphate-reducing bacteria Desulfovibrio. Annu Rev. Microbiol, 1984; 38: 551-592.
https://doi.org/10.1146/annurev.mi.38.100184.003003
PMid:6093686

59. Parey K., Fritz G., Ermler U., Kroneck P.M.H. Conserving energy with sulfate around 100 °C-struc­ture and mechanism of key metal enzymes in hyperthermophilic Archaeoglobus fulgidus. Metallomics, 2013; 5: 302-317.
https://doi.org/10.1039/c2mt20225e
PMid:23324858

60. Pereira I.C., Ramos A.R., Grein F. et all. A comparative genomic analysis of energy metabolism in sulfate reducing bacteria and archaea. Frontiers in Microbiol Microbial Physiol and Metabol, 2011; 2(69): 1-22.
https://doi.org/10.3389/fmicb.2011.00069
PMid:21747791 PMCid:PMC3119410

61. Pires R.H., Lourenco A.I., Morais F. et al. A novel membrane-bound respiratory complex from Desulfovibrio desulfuricans ATCC 27774. Biochim. Biophys. Acta-Bioenergetics, 2003; 1605: 67-82.
https://doi.org/10.1016/S0005-2728(03)00065-3

62. Pohorelic B.K., Voordouw J.K., Lojou E. et al. Effects of deletion of genes encoding Fe-only hydrogenase of Desulfovibrio vulgaris Hildenborough on hydrogen and lactate metabolism. J. Bacteriol, 2002; 184: 679-686.
https://doi.org/10.1128/JB.184.3.679-686.2002
PMid:11790737 PMCid:PMC139517

63. Postgate J.R. The sulfate-reducing bacteria. 2nd ed. Cambridge: Cambridge Univ. Press, 1984. 199 p.

64. Rabus R., Hansen T., Widdel F. Dissimilatory Sulfate- and Sulfur-Reducing Prokaryotes // Dworkin M. et al. The Prokaryotes. An Evolving Electronic Resource for the Microbiological Community, 3rd edition. New York: Springer-Verlag, 2000.

65. Ramos A.R., Keller K. L., Wall J.D., Pereira I.A. The membrane QmoABC complex interacts directly with the dissimilatory adenosine 5¢-phosphosulfate reductase in sulfate reducing bacteria. Front Microbiol, 2012; 3(137): 1-10.
https://doi.org/10.3389/fmicb.2012.00137
PMid:22536198 PMCid:PMC3333476

66. Sapra R., Bagramyan K., Adams M.W. A simple energy-conserving system: proton reduction coupled to proton translocation. Proc. Natl. Acad. Sci. USA, 2003; 100: 7545-7550.
https://doi.org/10.1073/pnas.1331436100
PMid:12792025 PMCid:PMC164623

67. Sim M.S., Wang D.T., Zane G.M. et al. Fractionation of sulfur isotopes by Desulfovibrio vulgaris mutants lacking hydrogenases or type I tetraheme cytochrome c3. Front. Microbiol, 2013; 4(171): 1-10.
https://doi.org/10.3389/fmicb.2013.00171
PMid:23805134 PMCid:PMC3691511

68. Sperling D., Kappler U., Wynen A., Dahl C., Truper H. Dissimilatory ATP sulfurylase from the hyperthermophilic sulphate reducer Archaeoglobus fulgidus belongs to the group of homo-oligomeric ATP sulfurylases. FEMS Microbiol. Lett, 1998; 162: 257-264.
https://doi.org/10.1016/S0378-1097(98)00120-7

69. Steger J.L., Vincent C., Ballard J.D., Krumholz L.R. Desulfovibrio sp genes involved in the respiration of sulphate during metabolism of hydrogen and lactate. Appl. Environ. Microbiol, 2002; 68: 1932-1937.
https://doi.org/10.1128/AEM.68.4.1932-1937.2002
PMid:11916715 PMCid:PMC123884

70. Sun L., Åkermark B., Ott S. Iron hydrogenase active site mimics in supramolecular systems aiming for light-driven hydrogen production. Coord Chem Rev, 2005; 249: 1653-1663.
https://doi.org/10.1016/j.ccr.2005.01.013

71. Tee W., Dyall-Smith M., Woods W., Eisen D. Probable New Species of Desulfovibrio Isolated from a Pyogenic Liver Abscess. J. Clin. Microbiol, 1996; 34(7): 1760-1764.

72. Zhou J., He Q., Hemme C.L., Mukhopadhyay A. at al. How sulphate-reducing microorga­nisms cope with stress: lessons from systems biology. Nat Rev Microbiol, 2011; 9: 452-466.
https://doi.org/10.1038/nrmicro2575
PMid:21572460

73. http://armstrong.chem.ox.ac.uk/hydrogenase.html

74. http://xtal.dq.fct.unl.pt/research/other_metalloproteins.html

75. http://kiemlicz.med.virginia.edu/efi/deposits/view/23


Refbacks

  • There are currently no refbacks.


Copyright (c) 2016 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.