DISSIMILATORY SULFATE REDUCTION IN THE INTESTINAL SULFATE-REDUCING BACTERIA
DOI: http://dx.doi.org/10.30970/sbi.1001.560
Abstract
The study of the intestinal sulfate-reducing bacteria, the process of dissimilatory sulfate reduction and accumulation of hydrogen sulfide, as well as their role in the inflammatory bowel diseases, including ulcerative colitis, in animals and human have increasingly attracted the attention of scientists. New opportunities for studying inflammatory bowel disease and the assessment of the effectiveness of its treatment is an urgent problem of modern biology and medicine. In this review, brief characteristics of these bacteria and their mechanism of dissimilatory sulfate reduction were described based on modern literature data and own research. The characteristics of substrates for intestinal sulfate-reducing bacteria and the thermodynamic properties of their electron donors were also described. Special attention was paid to the mechanism and stages of sulfate dissimilation including role of enzymes involved in this process. Based on our results, general scheme of dissimilatory sulfate reduction showing the activity of each enzyme of the process was demonstrated. The described physiological and biochemical parameters are important for a more detailed understanding of sulfate dissimilation in the human and animal bowel, as well as studying the mechanisms of action of the antimicrobial prophylactics and the therapy against specific components involved in the pathogenesis of the disease. It is also essential for understanding the mechanisms of bowel diseases and for evaluating the effectiveness of its therapy.
Keywords
Full Text:
PDFReferences
1. Barton L.L., Hamilton W.A. Sulphate-Reducing Bacteria. Environmental and Engineered Systems. Cambridge University Press, 2010; 553 p. | |
| |
2. Badziong W., Thauer R. Growth yields and growth rates of Desulfovibrio vulgaris (Marburg) growing on hydrogen plus sulphate and hydrogen plus thiosulphate as the sole energy sources. Arch. Microbiol, 1978; 117: 209-214. | |
| |
3. Broco M., Rousset M., Oliveira S., Rodrigues-Pousada C. Deletion of flavoredoxin gene in Desulfovibrio gigas reveals its participation in thiosulphate reduction. FEBS Lett, 2005; 579: 4803-4807. | |
| |
4. Brenner D.J., Krieg N.R., Staley J.T., Garrity G.M. Bergey's manual of Systematic Bacteriology. Vol. Two: The Proteobacteria, Part C: The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Second Edition USA, 2005; 1388. | |
| |
5. Deplancke B., Finster K., Graham W. et al. Gastrointestinal and microbial responses to sulphate-supplemented drinking water in mice. Exp. Biol. Med, 2003; 228: 424-433. | |
| |
6. Fite A., Macfarlane G.T., Cummings J.H. et al. Identification and quantitation of mucosal and faecal desulfovibrios using real-time PCR. Gut, 2004; 53: 523-529. | |
| |
7. Forzi L., Koch J., Guss A.M. et al. Assignment of the 4Fe-4S clusters of ech hydrogenase from Methanosarcina barkeria to individual subunits via the characterization of site-directed mutants. FEBS J, 2005; 272: 4741-4753. | |
| |
8. Frederiksen T.M., Finster K. Sulfite-oxido-reductase is involved in the oxidation of sulfite in Desulfocapsa sulfoexigens during disproportionation of thiosulphate and elemental sulfur. Biodegradation, 2003; 14: 189-198. | |
| |
9. Friedrich M.W. Phylogenetic analysis reveals multiple lateral transfers of adenosine-5'-phosphosulphate reductase genes among sulphate-reducing microorganisms. J. Bacteriol, 2002; 184: 278-289. | |
| |
10. Fritz G., Buchert T., Kroneck P.M.H. The Function of the [4Fe-4S] clusters and FAD in bacterial and archaeal adenylylsulfate reductases. J. Biol. Chem, 2002; 277: 26066-26073. | |
| |
11. Fritz G., Roth A., Schiffer A. et al. Structure of adenylylsulfate reductase from the hyperthermophilic Archaeoglobus fulgidus at 1.6-A resolution. Proc. Natl. Acad. Sci. USA, 2002; 99: 1836-1841. | |
| |
12. Gibson G.R., Cummings J.H., Macfarlane G.T. Growth and activities of sulphate-reducing bacteria in gut contents from healthysubjects and patients with ulcerative colitis. FEMS Microbiol. Ecol, 1991; 86: 103-112. | |
| |
13. Gibson G.R., Macfarlane S., Macfarlane G.T. Metabolic interactions involving sulphate-reducing and methanogenic bacteria in the human large intestine. FEMS Microbiol. Ecol, 1993; 12: 117-125. | |
| |
14. Goenka A., Voordouw J.K., Lubitz W. et al. Construction of a NiFe-hydrogenase deletion mutant of Desulfovibrio vulgaris Hildenborough. Biochem. Soc. Trans, 2005; 33: 59-60. | |
| |
15. Goldstein E.J.C., Citron D.M., Peraino V.A., Cross S.A. Desulfovibrio desulfuricans bacteremia and review of human Desulfovibrio infections. J. Clin. Microbiol, 2003; 41: 2752-2754. | |
| |
16. Harmsen H.J.M., Raangs G.C., He T. et al. Extensive set of 16S rRNA-based probes for detection of bacteria in human feces. Appl. Environ. Microbiol, 2002; 68: 2982-2990. | |
| |
17. Head K.A., Jurenka J.S. Inflammatory bowel disease part 1: Ulcerative colitis. А pathophysiology and coventional and alternative treatment options. Alt. Med. Rev, 2003; 8: 247-283. | |
| |
18. Hedderich R. Energy-converting NiFe hydrogenases from archaea and extremophiles: ancestors of complex I. J. Bioenerg. Biomembr, 2004; 36: 65-75. | |
| |
19. Kushkevych I.V. Sulfate-reducing bacteria of the human intestine. I. Dissimilatory sulfate reduction. Studia Biologica, 2012; 6(1): 149-180. | |
| |
20. Kushkevych I.V. Sulfate-reducing bacteria of the human intestine. II. The role in the diseases development. Studia Biologica, 2012; 6(2): 221-250. | |
| |
21. Kushkevych I.V. Dissimilatory sulfate reduction by various Desulfovibrio sp. strains of the human intestine. Microbiol. and Biotechnol, 2013; 3(23): 50-63. | |
| |
22. Kushkevych I.V., Moroz O.M. Growth of various strains of sulfate-reducing bacteria of human large intestine. Studia Biologica, 2012; 6(3): 115-124. | |
| |
23. Kushkevych I.V., Beno Y.J. Cluster and Cross-correlation Analysis of some Physiological Parameters by Various Desulfovibrio sp. and Desulfomicrobium sp. Bacterial Strains of the Human Intestine. SOJ Microbiol. & Inf. Dis, 2013; 1: 1-9. | |
| |
24. Kushkevych I.V. Growth of the Desulfomicrobium sp. strains, their sulfate- and lactate usage, production of sulfide and acetate by the strains isolated from the human large intestine. Microbiol. Discovery, 2014; 2: 1-8. | |
| |
25. Kushkevych I.V. Identification of sulfate-reducing bacteria strains of the human large intestine. Studia Biologica, 2013; 7(3): 115-124. | |
| |
26. Kushkevych I.V., Bartoš M., Bartošová L. Sequence analysis of the 16S rRNA gene of sulfate-reducing bacteria isolated from human intestine. Int. J. Curr. Microbiol. Appl. Sci, 2014; 3(2): 239-248. | |
| |
27. Kushkevych I.V. Effect of hydrogen sulfide at differential concentrations on the process of dissimilatory sulfate reduction by the bacteria Desulfovibrio piger. Sci Notes of Ternopil Nat. Ped. Univ. Series Biol, 2013; 4(57): 74-80. | |
| |
28. Kushkevych I.V. Dose-dependent effect of electron acceptor and donor on dissimilatory sulfate reduction by bacteria Desulfovibrio piger Vib-7 of human intestine. Studia Biologica, 2014; 8(1): 103-116. | |
| |
29. Kushkevych I.V., Hnatush S.O., Mutenko H.V. Glutathione level of Desulfovibrio desulfuricans ІМV K-6 under the influence of heavy metal salts. Ukr. Biochem. J, 2011; 83(6): 105-110. | |
| |
30. Kushkevych I.V., Antonyak H.L. New Desulfovibrio sp. strains isolated from human intestine and their dissimilatory sulfate reduction. Int. Cong. Med. Sci. (Sofia, Bulgaria), Abstract book, 2014; 22. | |
| |
31. Kushkevych I.V., Antonyak H.L. Activity of periplasmic hydrogenase of the intestinal sulfate-reducing bacteria. The Animal Biol. J, 2014;16(2): 35-41. | |
| |
32. Kushkevych I.V. Dissimilatory sulfate reduction in bacterium Desulfovibrio piger Vib-7 under the effect of medium with differential acidity. American J. Microbiol. & Biotechnol, 2014; 1(2): 49-55. | |
| |
33. Kushkevych I.V. The effect of hydrogen sulfide on the dissimilatory sulfate reduction of the intestinal bacteria Desulfovibrio piger. Int. Cong. Med. Sci. (Sofia, Bulgaria). Abstract book, 2015; 80. | |
| |
34. Kushkevych I.V., Fafula R.V. Dissimilatory sulfite reductase in cell-free extracts of intestinal sulfate-reducing bacteria. Studia Biologica, 2014; 8(2): 101-112. | |
| |
35. Kushkevych I., Bolis M., Bartoš M. Model-based characterization of the kinetic parameters of dissimilatory sulfate reduction under the effect of different initial density of Desulfovibrio piger Vib-7 bacterial cells. The Open Microbiol. J, 2015; 9: 55-69. | |
| |
36. Kushkevych I., Fafula R., Parák T., Bartoš M. Activity of Na+/K+-activated Mg2+-dependent ATP hydrolase in the cell-free extracts of the sulfate-reducing bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Acta Vet. Brno, 2015; 84(1): 3-12. | |
| |
37. Kushkevych I.V., Fafula R.V., Antonyak H.L. Catalase Activity of Sulfate-Reducing Bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9 Isolated from Human Large Intestine. Microbes and Health J, 2014; 3(1): 15-20. | |
| |
38. Kushkevych I.V., Antonyak H.L., Fafula R.V. Superoxide dismutase activity of the sulfate-reducing bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Microbiol. and Biotech, 2014; 4(28): 26-35. | |
| |
39. Kushkevych I.V. Kinetic characteristics of pyrophosphatase of the sulfate-reducing bacteria from human intestine. Sci. J. Visnyk Lviv Uni. Biol. Series, 2014; 68: 158-166. | |
| |
40. Kushkevych I.V. Lactate dehydrogenase activity in cell-free extracts of sulfate-reducing bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Sci. J. Visnyk Lviv Uni. Biol. Series, 2014; 67: 243-251. | |
| |
41. Kushkevych I.V. Activity and kinetic properties of adenosine 5′-phosphosulfate reductase in the intestinal sulfate-reducing bacteria. Microbiol. and Biotechnol, 2014; 2(26): 54-63. | |
| |
42. Kushkevych I.V., Antonyak H.L., Bartoš M. Kinetic properties of dissimilatory adenosine triphosphate sulfurylase of intestinal sulfate-reducing bacteria. Ukr. Biochem. J, 2014; 86(6): 129-138. | |
| |
43. Kushkevych I.V. Activity and Kinetic Properties of Phosphotransacetylase From Intestinal Sulfate-Reducing Bacteria. Acta Biochem. Polonica, 2015; 62(1): 103-108. | |
| |
44. Kushkevych I.V. Kinetic Properties of Pyruvate Ferredoxin Oxidoreductase of Intestinal Sulfate-Reducing Bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Pol. J. Microbiol, 2015; 64(2): 107-114. | |
| |
45. Kushkevych I.V. Acetate kinase Activity and Kinetic Properties of the Enzyme in Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9 Intestinal Bacterial Strains. The Open Microbiol. J, 2014; 8: 138-143. | |
| |
46. Kushkevych I.V. Etiological role of sulfate-reducing bacteria in the development of inflammatory bowel diseases and ulcerative colitis. American J. Inf. Dis. & Microbiol, 2014; 2(3): 63-73. | |
| |
47. Lemos R.S., Gomes C.M., Santana M. et al. The ''strict'' anaerobe Desulfovibrio gigas contains a membrane-bound oxygen respiratory chain. J. Inorg. Biochem, 2001; 86: 314. | |
| |
48. Loubinoux J., Bisson-Boutelliez C., Miller N., Le Faou A.E. Isolation of the provisionally named Desulfovibrio fairfieldensis from human periodontal pockets. Oral Microbiol. Immunol, 2002; 17: 321-323. | |
| |
49. Loubinoux J., Bronowicji J.-P., Pereira I.A. et. al. Sulphate-reducing bacteria in human feces and their association with inflammatory diseases. FEMS Microbiol. Ecol, 2002; 40: 107-112. | |
| |
50. Loubinoux J., Jaulhac B., Piemont Y. et al. Isolation of sulphate-reducing bacteria from human thoracoabdominal pus. J. Clin. Microbiol, 2003; 41: 1304-1306. | |
| |
51. Loubinoux J., Mory F., Pereira I.A., Le Faou A.E. Bacteremia caused by a strain of Desulfovibrio related to the provisionally named Desulfovibrio fairfieldensis. J. Clin. Microbiol, 2000; 38: 931-934. | |
| |
52. Loubinoux J., Valente F.M., Pereira A.C. et al. Reclassification of the only species of the genus Desulfomonas, Desulfomonas pigra, as Desulfovibrio piger comb. nov. Int. J. Syst. Evol. Microbiol, 2002; 52: 1305-1308. | |
| |
53. Madigan M.T. , Martinko J.M., Brock T.D. Brock. Biology of Microorganisms. Publisher: Pearson Prentice Hall, 11th ed, 2006; 992 P. | |
| |
54. Matias P.M., Pereira I.A., Soares C.M., Carrondo M.A. Sulphate respiration from hydrogen in Desulfovibrio bacteria: a structural biology overview. Prog. Biophys. Mol. Biol, 2005; 89: 292-329. | |
| |
55. McDougall R., Robson J., Paterson D., Tee W. Bacteremia Caused by a Recently Described Novel Desulfovibrio Species. J. Clin. Microbiol, 1997; 35(7): 1805-1808. | |
| |
56. Meuer J., Kuettner H.C., Zhang J.K. et al. Genetic analysis of the archaeon Methanosarcina barkeri Fusaro reveals a central role for Ech hydrogenase and ferredoxin in methanogenesis and carbon fixation. Proc. Natl. Acad. Sci. USA, 2002; 99: 5632-5637. | |
| |
57. Möller-Zinkhan D., Thauer R.K. Anaerobic lactate oxidation to 3CO2 by Archaeoglobus fulgidus via the carbon monoxide dehydrogenase pathway: demonstration of the acetyl-CoA carbon-carbon cleavage reaction in cell extracts Arch. Microbiol, 1990; 153: 215-218. | |
| |
58. Odom J.M., Peck H.D. Hydrogenase, electron-transfer proteins, and energy coupling in the sulphate-reducing bacteria Desulfovibrio. Annu Rev. Microbiol, 1984; 38: 551-592. | |
| |
59. Parey K., Fritz G., Ermler U., Kroneck P.M.H. Conserving energy with sulfate around 100 °C-structure and mechanism of key metal enzymes in hyperthermophilic Archaeoglobus fulgidus. Metallomics, 2013; 5: 302-317. | |
| |
60. Pereira I.C., Ramos A.R., Grein F. et all. A comparative genomic analysis of energy metabolism in sulfate reducing bacteria and archaea. Frontiers in Microbiol Microbial Physiol and Metabol, 2011; 2(69): 1-22. | |
| |
61. Pires R.H., Lourenco A.I., Morais F. et al. A novel membrane-bound respiratory complex from Desulfovibrio desulfuricans ATCC 27774. Biochim. Biophys. Acta-Bioenergetics, 2003; 1605: 67-82. | |
| |
62. Pohorelic B.K., Voordouw J.K., Lojou E. et al. Effects of deletion of genes encoding Fe-only hydrogenase of Desulfovibrio vulgaris Hildenborough on hydrogen and lactate metabolism. J. Bacteriol, 2002; 184: 679-686. | |
| |
63. Postgate J.R. The sulfate-reducing bacteria. 2nd ed. Cambridge: Cambridge Univ. Press, 1984. 199 p. | |
| |
64. Rabus R., Hansen T., Widdel F. Dissimilatory Sulfate- and Sulfur-Reducing Prokaryotes // Dworkin M. et al. The Prokaryotes. An Evolving Electronic Resource for the Microbiological Community, 3rd edition. New York: Springer-Verlag, 2000. | |
| |
65. Ramos A.R., Keller K. L., Wall J.D., Pereira I.A. The membrane QmoABC complex interacts directly with the dissimilatory adenosine 5¢-phosphosulfate reductase in sulfate reducing bacteria. Front Microbiol, 2012; 3(137): 1-10. | |
| |
66. Sapra R., Bagramyan K., Adams M.W. A simple energy-conserving system: proton reduction coupled to proton translocation. Proc. Natl. Acad. Sci. USA, 2003; 100: 7545-7550. | |
| |
67. Sim M.S., Wang D.T., Zane G.M. et al. Fractionation of sulfur isotopes by Desulfovibrio vulgaris mutants lacking hydrogenases or type I tetraheme cytochrome c3. Front. Microbiol, 2013; 4(171): 1-10. | |
| |
68. Sperling D., Kappler U., Wynen A., Dahl C., Truper H. Dissimilatory ATP sulfurylase from the hyperthermophilic sulphate reducer Archaeoglobus fulgidus belongs to the group of homo-oligomeric ATP sulfurylases. FEMS Microbiol. Lett, 1998; 162: 257-264. | |
| |
69. Steger J.L., Vincent C., Ballard J.D., Krumholz L.R. Desulfovibrio sp genes involved in the respiration of sulphate during metabolism of hydrogen and lactate. Appl. Environ. Microbiol, 2002; 68: 1932-1937. | |
| |
70. Sun L., Åkermark B., Ott S. Iron hydrogenase active site mimics in supramolecular systems aiming for light-driven hydrogen production. Coord Chem Rev, 2005; 249: 1653-1663. | |
| |
71. Tee W., Dyall-Smith M., Woods W., Eisen D. Probable New Species of Desulfovibrio Isolated from a Pyogenic Liver Abscess. J. Clin. Microbiol, 1996; 34(7): 1760-1764. | |
| |
72. Zhou J., He Q., Hemme C.L., Mukhopadhyay A. at al. How sulphate-reducing microorganisms cope with stress: lessons from systems biology. Nat Rev Microbiol, 2011; 9: 452-466. | |
| |
73. http://armstrong.chem.ox.ac.uk/hydrogenase.html | |
| |
74. http://xtal.dq.fct.unl.pt/research/other_metalloproteins.html | |
| |
75. http://kiemlicz.med.virginia.edu/efi/deposits/view/23 |
Refbacks
- There are currently no refbacks.
Copyright (c) 2016 Studia biologica
This work is licensed under a Creative Commons Attribution 4.0 International License.