PHYSIOLOGICAL PARAMETERS AND METAL-ACCUMULATING CAPACITY OF THE BIOFUEL PLANT MISCANTHUS × GIGANTEUS CULTIVATED ON OIL-CONTAMINATED PODZOL SOIL AND TREATED WITH HUMIC PREPARATIONS

Natalia Dzhura, Iryna Podan, Pavlo Shapoval, Olha Romanyuk, Halyna Antonyak


DOI: http://dx.doi.org/10.30970/sbi.1804.801

Abstract


Background. Physiological characteristics of the biofuel plant Miscanthus × giganteus J. M. Greef, Deuter ex Hodk. & Renvoize are currently attracting much attention due to its phytoremediation potential. The aim of this work was to study the content of photosynthetic pigments in the leaves of M. giganteus, the accumulation of metals in the rhizosphere and aboveground organs, as well as the morphological parameters of plants cultivated on oil-contaminated soil and exposed to treatment with humic preparations.
Materials and Methods. During field experiments, five experimental plots (PC and P1–P4) with an area of 1 m2 were laid out on podzol soil in the territory adjacent to the Starosambirske oil field. The PC plot was not subjected to any experimental treatment. The soil in plot P1 was planted with M. giganteus rhizomes; the soils in plots P2–P4 were contaminated with 10 L/m2 of crude oil and then planted with M. giganteus rhizomes. Before planting the rhizomes on plots P3 and P4, these were soaked in solutions of Fulvital® Plus Liquid and Humifield® Forte, respectively. During the growth period, the plants were sprayed twice with humic preparations.
Shoot height and leaf width, a- and b-type chlorophyll (Chla and Chlb, respectively), total chlorophyll (Chla+b) and carotenoid concentrations were measured using standard methods. The content of metals (Ca, Cr, Cu, Fe, K, Mg, Mn, Ni, Pb, Zn) in soil and plant samples was assessed by X-ray fluorescence analysis using an Elvax Light SDD Analyzer.
Results. The cultivation of M. giganteus on oil-contaminated soil did not affect shoot height or leaf width of plants, but it reduced the content of Chla, Chlb, Chla+b and carote­noids in plant leaves. Treatment of plants with humic preparations led to an increase in pigment concentrations in the leaves at different growth periods. Oil-contaminated soil planted with M. giganteus showed elevated levels of Cr and Ni. The cultivation of M. giganteus treated with Fulvital® Plus Liquid resulted in increased Ca, Mn and Ni contents in rhizosphere soil of an oil-contaminated plot. Growing M. giganteus on oil-contaminated soil resulted in significant decreases in Ca, Cr, Fe, K, Mg, Ni and Zn concentrations in plant stems. Treatment with humic preparations increased the content of the mentioned metals in the stems and the concentration of Mg and Ni in the leaves of plants from oil-contaminated soil compared to those in untreated plants. According to the bioaccumulation factor (BF) values, M. giganteus leaves have a high accumulation potential for Ni and Ca (BF>1), a medium accumulation potential for Mg, K and Cr (BF from 0.1 to 0.32) and a low accumulation potential for Fe and Zn (BF<0.1). The BF values of metals in leaves and stems decreased when plants were grown on oil-contaminated soil.
Conclusions. Humic preparation treatment has a positive effect on the physiological parameters of M. giganteus grown on oil-contaminated podzol soil. The ability of M. giganteus to extract Ni from soil may mediate the plant’s phytoremediation potential. In this regard, the cultivation of M. giganteus in combination with its treatment with humic preparations will be promising on lands contaminated with oil and petroleum products.


Keywords


Miscanthus × giganteus, biofuel crops, oil-contaminated soil, podzol soils, humic preparations, phytoremediation, heavy metals, photosynthesis

Full Text:

PDF

References


Abbasov, V. M., Mammadov, J. S., Asadova, R. A., Ahmadbayova S. F., & Mammadova R. R. (2024). Petroleum-based growth stimulators. Processes of Petrochemistry and oil Refining, 25(1), 237-254. doi:10.62972/1726-4685.2024.1.237
CrossrefGoogle Scholar

Adieze, I. E., Orji, J. C., Nwabueze, R. N., & Onyeze, G. O. C. (2012). Hydrocarbon stress response of four tropical plants in weathered crude oil contaminated soil in microcosms. International Journal of Environmental Studies, 69(3), 490-500. doi:10.1080/00207233.2012.665785
CrossrefGoogle Scholar

Agarwal, P., Vibhandik, R., Agrahari, R., Daverey, A., & Rani, R. (2024). Role of root exudates on the soil microbial diversity and biogeochemistry of heavy metals. Applied Biochemistry and Biotechnology, 196(5), 2673-2693. doi:10.1007/s12010-023-04465-2
CrossrefPubMedGoogle Scholar

Al Souki, K. S., Liné, C., Louvel, B., Waterlot, C., Douay, F., & Pourrut, B. (2020). Miscanthus × giganteus culture on soils highly contaminated by metals: modelling leaf decomposition impact on metal mobility and bioavailability in the soil-plant system. Ecotoxicology and Environmental Safety, 199, 110654. doi:10.1016/j.ecoenv.2020.110654
CrossrefPubMedGoogle Scholar

Ali, B., & Gill, R. A. (2022). Editorial: Heavy metal toxicity in plants: Recent insights on physiological and molecular aspects, volume II. Frontiers in Plant Science, 13, 1016257. doi:10.3389/fpls.2022.1016257
CrossrefPubMedPMCGoogle Scholar

Andrade, C. (2019). Multiple testing and protection against a type 1 (false positive) error using the Bonferroni and Hochberg corrections. Indian Journal of Psychological Medicine, 41(1), 99-100. doi:10.4103/ijpsym.ijpsym_499_18
CrossrefPubMedPMCGoogle Scholar

Aradhi, K. K., Dasari, B. M., Banothu, D., & Manavalan, S. (2023). Spatial distribution, sources and health risk assessment of heavy metals in topsoil around oil and natural gas drilling sites, Andhra Pradesh, India. Scientific Reports, 13(1),10614. doi:10.1038/s41598-023-36580-9
CrossrefPubMedPMCGoogle Scholar

Athar, H. U. R., Ambreen, S., Javed, M., Hina, M., Rasul, S., Zafar, Z. U., Manzoor, H., Ogbaga, C. C., Afzal, M., Al-Quranainy. F., & Ashraf, M. (2016). Influence of sub-lethal crude oil concentration on growth, water relations and photosynthetic capacity of maize (Zea mays L.) plants. Environmental Science and Pollution Research, 23(18), 18320-18331. doi:10.1007/s11356-016-6976-7
CrossrefPubMedGoogle Scholar

Bastia, G., Al Souki, K. S., & Pourrut, B. (2023). Evaluation of Miscanthus × giganteus tolerance to trace element stress: field experiment with soils possessing gradient Cd, Pb, and Zn concentrations. Plants (Basel), 12(7),1560. doi:10.3390/plants12071560
CrossrefPubMedPMCGoogle Scholar

Batistič, O., & Kudla, J. (2012). Analysis of calcium signaling pathways in plants. Biochimica et Biophysica Acta (BBA)-General Subjects, 1820(8), 1283-1293. doi:10.1016/j.bbagen.2011.10.012
CrossrefPubMedGoogle Scholar

Beale, C. V., Bint, D. A., & Long, S. P. (1996). Leaf photosynthesis in the C4-grass Miscanthus × giganteus, growing in the cool temperate climate of Southern England. Journal of Experimental Botany, 47(2), 267-273. doi:10.1093/jxb/47.2.267
CrossrefGoogle Scholar

Borzykh, O., Serhienko, V., Tkalenko, H., & Shyta, O. (2024). Influence of humic preparations on the efficiency of vegetable crops protection against diseases. Interdepartmental Thematic Scientific Collection of Phytosanitary Safety, 69, 3-16. doi:10.36495/1606-9773.2023.69.3-16 (In Ukrainian)
CrossrefGoogle Scholar

Burdová, H., Nebeská, D., Al Souki, K. S., Pilnaj, D., Kwoczynski, Z., Kříženecká, S., Auer Malinská, H., Vaněk, M., Kuráň, P., Pidlisnyuk, V., & Trögl, J. (2023). Miscanthus × giganteus stress tolerance and phytoremediation capacities in highly diesel contaminated soils. Journal of Environmental Management, 344, 118475. doi:10.1016/j.jenvman.2023.118475
CrossrefPubMedGoogle Scholar

Chen, Y. T., Wang, Y., & Yeh, K. C. (2017). Role of root exudates in metal acquisition and tolerance. Current Opinion in Plant Biology, 39, 66-72. doi:10.1016/j.pbi.2017.06.004
CrossrefPubMedGoogle Scholar

Chinedu, E., & Chukwuemeka, C. K. (2018). Oil spillage and heavy metals toxicity risk in the Niger Delta, Nigeria. Journal of Health and Pollution, 8(19), 180905. doi:10.5696/2156-9614-8.19.180905
CrossrefPubMedPMCGoogle Scholar

da Silva Correa, H., Blum, C. T., Galvão, F., & Maranho, L. T. (2022). Effects of oil contamination on plant growth and development: a review. Environmental Science and Pollution Research International, 29(29), 43501-43515. doi:10.1007/s11356-022-19939-9
CrossrefPubMedGoogle Scholar

Dong, S., Li, L., Chen, W., Chen, Z., Wang, Y., & Wang, S. (2024). Evaluation of heavy metal speciation distribution in soil and the accumulation characteristics in wild plants: a study on naturally aged abandoned farmland adjacent to tailings. Science of The Total Environment, 917, 170594. doi:10.1016/j.scitotenv.2024.170594
CrossrefPubMedGoogle Scholar

Drozd, O., Diadin, D., Naidonova, O., & Klochko, T. (2021). Soil transformation on restored drill pads of oil-gas fields in Eastern Ukraine. In: Y. Dmytruk & D. Dent (Eds.), Soils under stress (pp. 241-255). Springer Nature Switzerland AG. doi:10.1007/978-3-030-68394-8_23
CrossrefGoogle Scholar

DSTU ISO 11465-2001. (2003). Soil Quality. Determination of dry matter and moisture content by mass gravimetric method. Sokolovsky Institute of Soil Science and Agrochemistry Ukrainian Academy of Agrarian Sciences: Kyiv, Ukraine. Retrieved from https://online.budstandart.com/ua/catalog/doc-page.html?id_doc=55865

Dzura, N., & Podan, I. (2017). Ecological consequences of extended oil production at Staryi Sambir petroleum deposit. Visnyk of Lviv University. Biological series, 76, 120-127. doi:10.30970/vlubs.2017.76.15 (In Ukrainian)
CrossrefGoogle Scholar

Dzura, N. M., Tsvilinyuk, O. M., & Terek, O. I. (2007). Influence of soil pollution on macronutrient and micronutrient content in Carex hirta L. plants. Ukrainian Botanical Journal, 64(1), 122-131. (In Ukrainian)
Google Scholar

Erb, K., Haberl, H., & Plutzar, C. (2012). Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability. Energy Policy, 47(4), 260-269. doi:10.1016/j.enpol.2012.04.066
CrossrefPubMedPMCGoogle Scholar

Galieriková, A., & Materna, M. (2020). World seaborne trade with oil: one of main cause for oil spills? Transportation Research Procedia, 44, 297-304. doi:10.1016/j.trpro.2020.02.039
CrossrefGoogle Scholar

Gan, L., Wang, J., Xie, M., & Yang, B. (2022). Ecological risk and health risk analysis of soil potentially toxic elements from oil production plants in central China. Scientific Reports, 12(1), 17077. doi:10.1038/s41598-022-21629-y
CrossrefPubMedPMCGoogle Scholar

Hashimoto, H., Uragami, C., & Cogdell, R. J. (2016). Carotenoids and photosynthesis. Subcellular Biochemistry, 79, 111-139. doi:10.1007/978-3-319-39126-7_4
CrossrefPubMedGoogle Scholar

Hassan, M. U., Chattha, M. U., Khan, I., Chattha, M. B., Aamer, M., Nawaz, M., Ali, A., Khan, M. A. U., & Khan, T. A. (2019). Nickel toxicity in plants: reasons, toxic effects, tolerance mechanisms, and remediation possibilities - a review. Environmental Science and Pollution Research, 26(13), 12673-12688. doi:10.1007/s11356-019-04892-x
CrossrefPubMedGoogle Scholar

Hussein, Z. S., Hegazy, A. K., Mohamed, N. H., El-Desouky, M. A,, Ibrahim, S. D., & Safwat, G. (2022). Eco-physiological response and genotoxicity induced by crude petroleum oil in the potential phytoremediator Vinca rosea L. Journal of Genetic Engineering and Biotechnology, 20(1), 135. doi:10.1186/s43141-022-00412-6
CrossrefPubMedPMCGoogle Scholar

Jernelöv, A. (2018). Environmental effects of terrestrial oil spills. In: D. A. Dellasala & M. I. Goldstein (Eds.), Encyclopedia of the Anthropocene (Vol. 1, pp. 323-335). Elsevier, Oxford. doi:10.1016/b978-0-12-809665-9.10271-x
CrossrefGoogle Scholar

Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants. 4th edn. CRC Press, Boca Raton. doi:10.1201/9781420039900
CrossrefGoogle Scholar

Karabyn, V., Popovych, V., Shainoha, I., & Lazaruk, Y. (2019). Long-term monitoring of oil contamination of profile-differentiated soils on the site of influence of oil-and-gas wells in the central part of the Boryslav-Pokuttya oil-and-gasbearing area. Petroleum and Coal, 61(1), 81-89.
Google Scholar

Lee, W. C., & Kuan, W. C. (2015). Miscanthus as cellulosic biomass for bioethanol production. Biotechnology Journal, 10(6), 840-854. doi:10.1002/biot.201400704
CrossrefPubMedGoogle Scholar

Li, X., Zhang, W., Niu, D., & Liu, X. (2024). Effects of abiotic stress on chlorophyll metabolism. Plant Science, 342, 112030. doi:10.1016/j.plantsci.2024.112030
CrossrefPubMedGoogle Scholar

Lichtenthaler, H., & Wellburn, A. R. (1983). Determination of total carotenoids and chlorophyll a and b of leaf extracts in different solvents. Biochemical Society Transactions, 603, 591-593. doi:10.1042/bst0110591
CrossrefGoogle Scholar

Marenych, M. M., Hanhur, V. V., Len, O. I., Hangur, Yu. M., Zhornyk, I. I., & Kalinichenko, A. V. (2019). The efficiency of humic growth stimulators in pre-sowing seed treatment and foliar additional fertilizing of sown areas of grain and industrial crops. Agronomy Research, 17(1). 194-205. doi:10.15159/ar.19.023
CrossrefGoogle Scholar

Mirecki, N., Rukie Agič, R., Šunić, L., Milenković, L., & Ilić, Z. S. (2015). Transfer factor as indicator of heavy metals content in plants. Fresenius Environmental Bulletin, 24, 4212-4219.
Google Scholar

Moradi, B., Kissen, R., Maivan, H. Z., Hashtroudi, M. S., Sorahinobar, M., Sparstad, T., & Bones, A. M. (2020). Assessment of oxidative stress response genes in Avicennia marina exposed to oil contamination - Polyphenol oxidase (PPOA) as a biomarker. Biotechnology Reports, 28, e00565. doi:10.1016/j.btre.2020.e00565
CrossrefPubMedPMCGoogle Scholar

Mostafa, A. A., Hafez, R. M., Hegazy, A. K., Fattah, A. M. A.-E., Mohamed, N. H., Mustafa, Y. M., Gobouri, A. A., & Azab, E. (2021). Variations of structural and functional traits of Azolla pinnata R. Br. in response to crude oil pollution in arid regions. Sustainability, 13(4), 2142. doi:10.3390/su13042142
CrossrefGoogle Scholar

Nsanganwimana, F., Al Souki, K. S., Waterlot, C., Douay, F., Pelfrêne, A., Ridošková, A., Louvel, B., & Pourrut, B. (2021). Potentials of Miscanthus × giganteus for phytostabilization of trace element-contaminated soils: ex situ experiment. Ecotoxicology and Environmental Safety, 214, 112125. doi: 10.1016/j.ecoenv.2021.112125
CrossrefPubMedGoogle Scholar

Orocio-Carrillo, J. A., Rivera-Cruz, M. C., Juárez-Maldonado, A., Bautista-Muñoz, C. C., Trujillo-Narcía, A., González-García, Y., & Cadena-Villegas, S. (2024). Crude oil induces plant growth and antioxidant production in Leersia hexandra Sw. Plant, Soil and Environment, 70(2), 72-83. doi:10.17221/311/2023-pse
CrossrefGoogle Scholar

Pidlisnyuk, V., Mamirova, A., Newton, R. A., Stefanovska, T., Zhukov, O., Tsygankova, V., & Shapoval, P. (2022). The role of plant growth regulators in Miscanthus × giganteus growth on trace elements-contaminated soils. Agronomy, 12(12), 2999; doi:10.3390/agronomy12122999
CrossrefGoogle Scholar

Podan, I., & Dzhura, N. (2019). Humus content and acidity of oil-polluted soil in the phytoremediation process. Acta Carpathica, 31-32, 44-51.

Polishchuk, A. I., & Antonyak, H. L. (2019). Accumulation of heavy metals in gametophytes of the epilithic mosses. Studia Biologica, 13(2), 21-28. doi:10.30970/sbi.1302.601
CrossrefGoogle Scholar

Polishchuk, A. I., & Antonyak, H. L. (2022). Dynamics of foliar concentrations of photosynthetic pigments in woody and herbaceous plant species in the territory of an industrial city. Studia Biologica, 16(2), 29-40. doi:10.30970/sbi.1602.684
CrossrefGoogle Scholar

Pozniak, S. P. (Ed.). (2019). Grunty Lvivskoi oblasti [Soils of Lviv Region]. Lviv: Ivan Franko National University. Retrieved from https://geography.lnu.edu.ua/wp-content/uploads/2020/09/gruntu-lviv-collect-monography-2019.pdf (In Ukrainian)

Pysarenko, P. V., & Bezsonova, V. O. (2020). Potential for the utilization of biofuel plant of the second generation of Miscanthus giganteus for phytoremediation of oil-contaminated lands. Agrology, 3(3), 127-132. doi:10.32819/020015
CrossrefGoogle Scholar

Rahman, Z., & Singh, V. P. (2020). Bioremediation of toxic heavy metals (THMs) contaminated sites: concepts, applications and challenges. Environmental Science and Pollution Research International, 27(22), 27563-27581. doi:10.1007/s11356-020-08903-0
CrossrefPubMedGoogle Scholar

Rodríguez-Rodríguez, N., Rivera-Cruz, M., Trujillo-Narcía, A., Almaráz-Suárez, J., & Salgado-García, S. (2016). Spatial distribution of oil and biostimulation through the rhizosphere of Leersia hexandra in degraded soil. Water, Air & Soil Pollution, 227(9). doi:10.1007/s11270-016-3030-9
CrossrefGoogle Scholar

Roy, P., Rutter, A., Gainer, A., Haack, E., & Zeeb, B. A. (2023). Phytotoxicity of weathered petroleum hydrocarbons in soil to boreal plant species. Environmental Research, 238(1), 117136. doi:10.1016/j.envres.2023.117136
CrossrefPubMedGoogle Scholar

Senila, M., & Kovacs, E. (2024). Use of diffusive gradients in thin-film technique to predict the mobility and transfer of nutrients and toxic elements from agricultural soil to crops-an overview of recent studies. Environmental Science and Pollution Research International, 31(24), 34817-34838. doi:10.1007/s11356-024-33602-5
CrossrefPubMedPMCGoogle Scholar

Singha, W. J, & Deka, H. (2024). Ecological and human health risk associated with heavy metals (HMs) contaminant sourced from petroleum refinery oily sludge. Journal of Hazardous Materials, 476, 135077. doi:10.1016/j.jhazmat.2024.135077
CrossrefPubMedGoogle Scholar

Snitynskyi, V. V., Solohub, L. I., Antoniak, H. L., Kopachuk, D. M., & Herasymiv, M. H. (1999). Bilohichna rol' khromu v organizmi liudyny i tvaryn [Biological role of chromium in humans and animals]. Ukrainskii Biokhimicheskii Zhurnal, 71(2), 5-9. (In Ukrainian)
PubMedGoogle Scholar

Stirbet, A., Lazár, D., Guo, Y., & Govindjee, G. (2020). Photosynthesis: basics, history and modelling. Annals of Botany, 126(4), 511-537. doi:10.1093/aob/mcz171
CrossrefPubMedPMCGoogle Scholar

Terek, O. I. (2007). Rist roslyn [Growth of plants]. Lviv: Ivan Franko National University. (In Ukrainian)
Google Scholar

Tian, X.-Y., He, D.-D., Bai, S., Zeng, W.-Z., Wang, Z., Wang, M., Wu, L.-Q., & Chen, Z.-C. (2021). Physiological and molecular advances in magnesium nutrition of plants. Plant and Soil, 468(1-2), 1-17. doi:10.1007/s11104-021-05139-w
CrossrefGoogle Scholar

Tudge, S. J., Purvis, A., & De Palma, A. (2021). The impacts of biofuel crops on local biodiversity: a global synthesis. Biodiversity and Conservation, 30(11), 2863-2883. doi:10.1007/s10531-021-02232-5
CrossrefGoogle Scholar

USEPA. (2007). United States Standard: Field Portable X-Ray Fluorescence Spectrometry for the Determination of Elemental Concentrations in Soil and Sediment. SW-846 Test Method 6200-2007. U. S. Environmental Protection Agency: Washington, DC.

Wang, A., Fu, W., Feng, Y., Liu, Z., & Song, D. (2022). Synergetic effects of microbial-phytoremediation reshape microbial communities and improve degradation of petroleum contaminants. Journal of Hazardous Materials, 429, 128396. doi:10.1016/j.jhazmat.2022.128396
CrossrefPubMedGoogle Scholar

Welham, S. J., Gezan, S. A., Clark, S. J., & Mead, A. (2014). Statistical methods in biology: design and analysis of experiments and regression. CRC Press. doi:10.1201/b17336
CrossrefGoogle Scholar

Wiens, J., Fargione, J., & Hill, J. (2011). Biofuels and biodiversity. Ecological Applications, 21(4), 1085-1095. doi:10.1890/09-0673.1
CrossrefPubMedGoogle Scholar

Wyszkowski, M., & Kordala, N. (2022). Trace element contents in petrol-contaminated soil following the application of compost and mineral materials. Materials, 15(15), 5233. doi:10.3390/ma15155233
CrossrefPubMedPMCGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Natalia Dzhura, Iryna Podan, Pavlo Shapoval, Olha Romanyuk, Halyna Antonyak

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.