PEROXIDE-INDUCED OXIDATIVE STRESS IN ERYTHROCYTES UNDER THE ACTION OF LOW-FREQUENCY VIBRATION

Olga Dotsenko, Galyna Taradina


DOI: http://dx.doi.org/10.30970/sbi.1804.802

Abstract


Background. In recent years, many publications have highlighted the role of erythrocytes in the pathogenesis of various acute and chronic diseases. Their negative impact is explained by the ability of these cells to generate superoxide anion-radical and other reactive oxygen species (ROS) due to autooxidation of hemoglobin, which increases in hypoxia. The purpose of this work was to study the role of autooxidation of hemoglobin of erythrocytes and activation of redox processes in the regulation of specific physiological processes of these cells under the influence of vibration – a factor that combines mechanical influence, oxidative stress and hypoxia.
Materials and Methods. An erythrocyte suspension at T = 25 °C was subjected to vibration for 3 hours in the frequency range from 8 to 32 Hz, with amplitudes of 0.5±0.04 and 0.9±0.08 mm. At specified intervals of time, the content of hydrogen peroxide, the propensity of hemoglobin to autoxidation and the content of hemoglobin ligand forms of the cytoplasmic fraction in the hemolysates of cells were measured. Spearman’s non-parametric correlation analysis was used to analyze the relationship between the studied indicators.
Results. The processes of hemoglobin autooxidation in erythrocytes under low-frequen­cy vibration conditions were investigated. Changes in the kinetics of the reaction of erythrocyte hemoglobin oxidation with potassium hexacyanoferrate were observed. An increase in the content of intracellular hydrogen peroxide was shown, which increased more than twice in the frequency range of 16–24 Hz, A = 0.9±0.08 mm. The formation of hemichromes, an increase in the content of methemoglobin in cells was shown. In the frequency range of 20–32 Hz, the formation of ferrylhemoglobin was recorded.
Conclusion. Under the influence of vibration in the frequency range of 8–24 Hz, unstable forms of hemoglobin are formed in erythrocytes, which are oxidized to hemichromes. The process of hemoglobin autooxidation, which initiates oxidative stress, slows down over time due to the increase in the content of oxyhemoglobin. The formation of hemichromes at high frequencies indicates the involvement of hemoglobin in oxidative processes, which can have negative consequences for cells.


Keywords


ligand forms of hemoglobin, autoxidation of hemoglobin, heme, hypoxia, hemichrome, ferrylyhemoglobin, membrane-bound hemoglobin

Full Text:

PDF

References


Alayash, A. I. (2022). Oxidation reactions of cellular and acellular hemoglobins: implications for human health. Frontiers in Medical Technology, 4, 1068972. doi:10.3389/fmedt.2022.1068972
CrossrefPubMedPMCGoogle Scholar

Anastasiadi, A. T., Arvaniti, V.-Z., Hudson, K. E., Kriebardis, A. G., Stathopoulos, C., D'Alessandro, A., Spitalnik, S. L., & Tzounakas, V. L. (2024). Exploring unconventional attributes of red blood cells and their potential applications in biomedicine. Protein & Cell, 15(5), 315-330. doi:10.1093/procel/pwae001
CrossrefPubMedPMCGoogle Scholar

Anderson, H. L., Brodsky, I. E., & Mangalmurti, N. S. (2018). The evolving erythrocyte: red blood cells as modulators of innate immunity. The Journal of Immunology, 201(5), 1343-1351. doi:10.4049/jimmunol.1800565
CrossrefPubMedPMCGoogle Scholar

Barshtein, G., Livshits, L., Gural, A., Arbell, D., Barkan, R., Pajic-Lijakovic, I., & Yedgar, S. (2024). Hemoglobin binding to the red blood cell (RBC) membrane is associated with decreased cell deformability. International Journal of Molecular Sciences, 25(11), 5814. doi:10.3390/ijms25115814
CrossrefPubMedPMCGoogle Scholar

Beppu, M., Mizukami, A., Nagoya, M., & Kikugawa, K. (1990). Binding of anti-band 3 autoantibody to oxidatively damaged erythrocytes. Formation of senescent antigen on erythrocyte surface by an oxidative mechanism. The Journal of Biological Chemistry, 265(6), 3226-3233. doi:10.1016/s0021-9258(19)39757-1
CrossrefGoogle Scholar

Braidotti, N., Ciubotaru, C. D., Rizzo, D., Bergamo, L., Bernareggi, A., & Cojoc, D. (2023). Investigating mechanosensitive channels activation in concert with the mechanical properties of red blood cells. Discover Mechanical Engineering, 2(1), 18. doi:10.1007/s44245-023-00026-3
CrossrefGoogle Scholar

Cilek, N., Ugurel, E., Goksel, E., & Yalcin, O. (2024). Signaling mechanisms in red blood cells: a view through the protein phosphorylation and deformability. Journal of Cellular Physiology, 239(3), e30958. doi:10.1002/jcp.30958
CrossrefPubMedGoogle Scholar

Cortese-Krott, M. M. (2023). The reactive species interactome in red blood cells: oxidants, antioxidants, and molecular targets. Antioxidants, 12(9), 1736. doi:10.3390/antiox12091736
CrossrefPubMedPMCGoogle Scholar

Dotsenko, O. I., Mykutska, I. V., Taradina, G. V., & Boiarska, Z. O. (2020). Potential role of cytoplasmic protein binding to erythrocyte membrane in counteracting oxidative and metabolic stress. Regulatory Mechanisms in Biosystems, 11(3), 455-462. doi:10.15421/022070
CrossrefGoogle Scholar

Dotsenko, O. I., Mischenko А. М., & Taradina, G. V. (2021a). Vibration influence on the O2-dependent processes activity in human erythrocytes. Regulatory Mechanisms in Biosystems, 12(3), 452-458. doi:10.15421/022162
CrossrefGoogle Scholar

Dotsenko, O. I., Taradina, G. V., & Mischenko, А. М. (2021b). Peroxidase activity of erythrocytes hemoglobin under action of low-frequency vibration. Studia Biologica, 15(4), 3-16. doi:10.30970/sbi.1504.666
CrossrefGoogle Scholar

Dotsenko, О. І. (2023). Mechanotransduction signaling pathways of erythrocytes associated with restructuring of cell metabolism. Regulatory Mechanisms in Biosystems, 14(4), 617-623. doi:10.15421/022389
CrossrefGoogle Scholar

Fang, Z., Wang, X., Zhou, L., Zhang, L., & Hu, J. (2020). Formation and stability of bulk nanobubbles by vibration. Langmuir, 36, 2264-2270. doi:10.1021/acs.langmuir.0c00036
CrossrefPubMedGoogle Scholar

Girasole, M., Dinarelli, S., & Longo, G. (2023). Correlating nanoscale motion and ATP production in healthy and favism erythrocytes: a real-time nanomotion sensor study. Frontiers in Microbiology, 14, 1196764. doi:10.3389/fmicb.2023.1196764
CrossrefPubMedPMCGoogle Scholar

Gwozdzinski, K., Pieniazek, A., & Gwozdzinski, L. (2021). Reactive oxygen species and their involvement in red blood cell damage in chronic kidney disease. Oxidative Medicine and Cellular Longevity, 2021, 6639199. doi:10.1155/2021/6639199
CrossrefPubMedPMCGoogle Scholar

Ivanitsky, G. K., Tselen, B. Ya., Nedbailo, A. Ye., Radchenko, N. L., & Gozhenko, L. P. (2023). Some problems of modeling the liquid cavitation degassing. I. Acoustic cavitation. Physics of Aerodisperse Systems, 61, 227-240. doi:10.18524/0367-1631.2023.61.292236
CrossrefGoogle Scholar

Kanias, T., & Acker, J. P. (2010). Biopreservation of red blood cells - the struggle with hemoglobin oxidation. The FEBS Journal, 277(2), 343-356. doi:10.1111/j.1742-4658.2009.07472.x
CrossrefPubMedGoogle Scholar

Kiefmann, R., Rifkind, J. M., Nagababu, E., & Bhattacharya, J. (2008). Red blood cells induce hypoxic lung inflammation. Blood, 111(10), 5205-5214. doi:10.1182/blood-2007-09-113902
CrossrefPubMedPMCGoogle Scholar

Leo, F., Hutzler, B., Ruddiman, C. A., Isakson, B. E., & Cortese-Krott, M. M. (2020). Cellular microdomains for nitric oxide signaling in endothelium and red blood cells. Nitric Oxide, 96, 44-53. doi:10.1016/j.niox.2020.01.002
CrossrefPubMedPMCGoogle Scholar

Liu, X., & Nakamura, F. (2021). Mechanotransduction, nanotechnology, and nanomedicine. Journal of Biomedical Research, 35(4), 284-293. doi:10.7555/jbr.34.20200063
CrossrefPubMedPMCGoogle Scholar

Mahdi, A., Cortese-Krott, M. M., Kelm, M., Li, N., & Pernow, J. (2021). Novel perspectives on redox signaling in red blood cells and platelets in cardiovascular disease. Free Radical Biology & Medicine, 168, 95-109. doi:10.1016/j.freeradbiomed.2021.03.020
CrossrefPubMedGoogle Scholar

Mal, A., & Chatterjee, I. B. (1991). Mechanism of autoxidation of oxyhaemoglobin. Journal of Biosciences, 16(1-2), 55-70. doi:10.1007/bf02720051
CrossrefGoogle Scholar

Mrakic-Sposta, S., Gussoni, M., Marzorati, M., Porcelli, S., Bosco, G., Balestra, C., Montorsi, M., Lafortuna, C., & Vezzoli, A. (2023). The "on-off" switching response of reactive oxygen species in acute normobaric hypoxia: preliminary outcome. International Journal of Molecular Sciences, 24(4), 4012. doi:10.3390/ijms24044012
CrossrefPubMedPMCGoogle Scholar

Melo, D., Coimbra, S., Rocha, S., & Santos-Silva, A. (2023). Inhibition of erythrocyte's catalase, glutathione peroxidase or peroxiredoxin 2 - impact on cytosol and membrane. Archives of Biochemistry and Biophysics, 739, 109569. doi:10.1016/j.abb.2023.109569
CrossrefGoogle Scholar

Meng, F., & Alayash, A. I. (2017). Determination of extinction coefficients of human hemoglobin in various redox states. Analytical Biochemistry, 521, 11-19. doi:10.1016/j.ab.2017.01.002
CrossrefPubMedPMCGoogle Scholar

Nakamura, F. (2017). Mechanotransduction in blood cells. Blood and Genomics, 1(1), 1-9. doi:10.46701/apjbg.20170117017
CrossrefGoogle Scholar

Nyakundi, B. B., Erdei, J., Tóth, A., Balogh, E., Nagy, A., Nagy, B., Novák, L., Bognár, L., Paragh, G., Kappelmayer, J., & Jeney, V. (2020). Formation and detection of highly oxidized hemoglobin forms in biological fluids during hemolytic conditions. Oxidative Medicine and Cellular Longevity, 2020, 8929020. doi:10.1155/2020/8929020
CrossrefPubMedPMCGoogle Scholar

Obeagu, E. I., Igwe, M. C., & Obeagu, G. U. (2024). Oxidative stress's impact on red blood cells: unveiling implications for health and disease. Medicine, 103(9), e37360. doi:10.1097/md.0000000000037360
CrossrefPubMedPMCGoogle Scholar

Orrico, F., Möller, M. N., Cassina, A., Denicola, A., & Thomson, L. (2018). Kinetic and stoichiometric constraints determine the pathway of H2O2 consumption by red blood cells. Free Radical Biology and Medicine, 121, 231-239. doi:10.1016/j.freeradbiomed.2018.05.006
CrossrefPubMedGoogle Scholar

Orrico, F., Laurance, S., Lopez, A. C., Lefevre, S. D., Thomson, L., Möller, M. N., & Ostuni, M. A. (2023). Oxidative stress in healthy and pathological red blood cells. Biomolecules, 13(8), 1262. doi:10.3390/biom13081262
CrossrefPubMedPMCGoogle Scholar

Ou, P., & Wolff, S. P. (1994). Erythrocyte catalase inactivation (H2O2 production) by ascorbic acid and glucose in the presence of aminotriazole: role of transition metals and relevance to diabetes. Biochemical Journal, 303(3), 935-939. doi:10.1042/bj3030935
CrossrefPubMedPMCGoogle Scholar

Potor, L., Hendrik, Z., Patsalos, A., Katona, É., Méhes, G., Póliska, S., Csősz, É., Kalló, G., Komáromi, I., Combi, Z., Posta, N., Sikura, K. É., Pethő, D., Oros, M., Vereb, G., Tóth, C., Gergely, P., Nagy, L., Balla, G., & Balla, J. (2021). Oxidation of hemoglobin drives a proatherogenic polarization of macrophages in human atherosclerosis. Antioxidants & Redox Signaling, 35(12), 917-950. doi:10.1089/ars.2020.8234
CrossrefPubMedPMCGoogle Scholar

Potuznik, S., Gelvan, D., Burda, P., & Saltman, P. (1993). Thiols, gold-thiols, zinc-thiols and the redox state of hemoglobin. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1164(3), 289-298. doi:10.1016/0167-4838(93)90261-o
CrossrefPubMedGoogle Scholar

Puckeridge, M., Chapman, B. E., Conigrave, A. D., & Kuchel, P. W. (2014). Membrane flickering of the human erythrocyte: physical and chemical effectors. European Biophysics Journal, 43(4-5), 169-177. doi:10.1007/s00249-014-0952-2
CrossrefPubMedGoogle Scholar

Rachmilewitz, E. A., Peisach, J., & Blumberg, W. E. (1971). Studies on the stability of oxyhemoglobin A and its constituent chains and their derivatives. Journal of Biological Chemistry, 246(10), 3356-3366. doi:10.1016/s0021-9258(18)62233-1
CrossrefPubMedGoogle Scholar

Rifkind, J. M., Zhang, L., Levy, A., & Manoharan, P. T. (1991). The hypoxic stress on erythrocytes associated with superoxide formation. Free Radical Research Communications, 13(1), 645-652. doi:10.3109/10715769109145842
CrossrefGoogle Scholar

Rifkind, J. M., Ramasamy, S., Manoharan, P. T., Nagababu, E., & Mohanty, J. G. (2004). Redox reactions of hemoglobin. Antioxidants & Redox Signaling, 6(3), 657-666. doi:10.1089/152308604773934422
CrossrefPubMedGoogle Scholar

Rifkind, J. M., & Nagababu, E. (2013). Hemoglobin redox reactions and red blood cell aging. Antioxidants & Redox Signaling, 18(17), 2274-2283. doi:10.1089/ars.2012.4867
CrossrefPubMedPMCGoogle Scholar

Rifkind, J. M., Mohanty, J. G., Nagababu, E., Salgado, M. T., & Cao, Z. (2018). Potential modulation of vascular function by nitric oxide and reactive oxygen species released from erythrocytes. Frontiers in Physiology, 9, 690. doi:10.3389/fphys.2018.00690
CrossrefPubMedPMCGoogle Scholar

Shikama, K., & Matsuoka, A. (2003). Human haemoglobin: a new paradigm for oxygen binding involving two types of alphabeta contacts. European Journal of Biochemistry, 270(20), 4041-4051. doi:10.1046/j.1432-1033.2003.03791.x
CrossrefPubMedGoogle Scholar

Spolitak, T., Hollenberg, P. F., & Ballou, D. P. (2016). Oxidative hemoglobin reactions: applications to drug metabolism. Archives of Biochemistry and Biophysics, 600, 33-46. doi:10.1016/j.abb.2016.04.007
CrossrefPubMedGoogle Scholar

Tomoda, A., Yoneyama, Y., & Tsuji, A. (1981). Changes in intermediate haemoglobins during autoxidation of haemoglobin. The Biochemical Journal, 195(2), 485-492. doi:10.1042/bj1950485
CrossrefPubMedPMCGoogle Scholar

Tsuruga, M., Matsuoka, A., Hachimori, A., Sugawara, Y., & Shikama, K. (1998). The molecular mechanism of autoxidation for human oxyhemoglobin. Tilting of the distal histidine causes nonequivalent oxidation in the beta chain. The Journal of Biological Chemistry, 273(15), 8607-8615. doi:10.1074/jbc.273.15.8607
CrossrefPubMedGoogle Scholar

Ugurel, E., Goksel, E., Cilek, N., Kaga, E., & Yalcin, O. (2022). Proteomic analysis of the role of the adenylyl cyclase-cAMP pathway in red blood cell mechanical responses. Cells, 11(7), 1250. doi:10.3390/cells11071250
CrossrefPubMedPMCGoogle Scholar

Welbourn, E. M., Wilson, M. T., Yusof, A., Metodiev, M. V., & Cooper, C. E. (2017). The mechanism of formation, structure and physiological relevance of covalent hemoglobin attachment to the erythrocyte membrane. Free Radical Biology & Medicine, 103, 95-106. doi:10.1016/j.freeradbiomed.2016.12.024
CrossrefPubMedPMCGoogle Scholar

Yang, Q., Chen, D., Li, C., Liu, R., & Wang, X. (2024). Mechanism of hypoxia-induced damage to the mechanical property in human erythrocytes - band 3 phosphorylation and sulfhydryl oxidation of membrane proteins. Frontiers in Physiology, 15, 1399154. doi:10.3389/fphys.2024.1399154
CrossrefPubMedPMCGoogle Scholar

Yoon, Y. Z., Hong, H., Brown, A., Kim, D. C., Kang, D. J., Lew, V. L., & Cicuta, P. (2009). Flickering analysis of erythrocyte mechanical properties: dependence on oxygenation level, cell shape, and hydration level. Biophysical Journal, 97(6), 1606-1615. doi:10.1016/j.bpj.2009.06.028
CrossrefPubMedPMCGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Olga Dotsenko, Galyna Taradina

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.