GENETIC STRUCTURE OF THE POPULATION OF PRZEWALSKI’S HORSE (EQUUS PRZEWALSKII) ACCORDING TO CYTOGENETIC AND ISSR MARKERS

Lyubov Starodub, Mykola Porhun, Nataliya Mokhnachova, Andrii Berezovsky, Nataliya Yasinetska, Kyrylo Kopylov


DOI: http://dx.doi.org/10.30970/sbi.1804.792

Abstract


Background. Przewalski’s horse is included in the Red List of the International Union for Conservation of Nature and the Red Data Book of Ukraine as an endangered species. To confirm the uniqueness and consolidation of rare animal species, cytogenetic and molecular genetic monitoring is necessary. Obtaining biological material (blood) for genetic research is preceded by immobilization of wild ungulates. The successful selection of drugs for the purpose of sedation and analgesia helps to preserve the life and health of the animal.
Materials and Methods. Przewalski’s wild horse population (10 heads) of the F. E. Falz-Fein “Askania-Nova” biosphere reserve, immobilization of animals with the Madison drug and the Reverson antidote, cytogenetic and molecular genetic (ISSR-fingerprinting) analysis.
Results. The effectiveness indicators of doses of Madison and Reverson were: in horses m = 200 kg – a dose of Madison 20 mL/head, immobilization after 22 min, in horses m = 300 kg, a dose of Madison – 25 mL/head, immobilization in 20–22 min. The Reverson antidote was applied in the following doses: animal m = 200 kg – a dose of Reverson 5–15 mL/goal, cessation of the sedative effect – 12 min; animal m = 300 kg – a dose of Reverson 5–15 mL/goal, cessation of the sedative effect – 18 min. Observation of the effect of the drugs did not reveal any negative side effects. Cytogenetic analysis determined the karyotype norm of somatic cells with 2n = 66 chromosomes. Genomic disorders, aneuploidy, accounted for 6.7%, polyploidy – 1.3 %. Structural violations (chromosomal and chromatid breaks) were not detected. The results of the micronucleus test: the share of lymphocytes with a micronucleus – 3.0 ‰, binuclear lymphocytes – 2.3 ‰, mitotic index – 7.7 ‰. Genetic indicators of the population of Przewalski’s horses according to ISSR markers: when using (GA)9C as a primer, microsatellite repeats of polymorphic loci were not found, and according to primer (GAG)6C – 50 % of polymorphic loci. The main indicators of genetic diversity, with the help of ISSR markers: the share of polymorphic loci was 25 %, the average gene diversity per locus – 0.39, the Shannon–Wiener information index – 2.5.
Conclusions. No negative side effects occur when Madison and Reverson drugs are used to immobilize Przewalski’s horses. According to the results of cytogenetic analy­sis, the stability of the karyotype of the studied animals was established. The study of genetic polymorphism of the horse population by ISSR markers (AG)9C and (GAG)6C indicates a high degree of genetic consolidation. All tested animals are relatively safe according to the revealed intra-population genetic diversity.


Keywords


Przewalski’s horse, immobilization of horses, cytogenetic analysis, ISSR markers, intra-population diversity

Full Text:

PDF

References


Akimov, I. A., (Ed.). (2009). Chervona knyha Ukrainy. Tvarynnyi svit [Red Book of Ukraine. Fauna]. Kyiv: Hlobalkonsaltynh. (In Ukrainian)
Google Scholar

Bonassi, S., & Fenech, M. (2021). Roadmap for translating results from the micronucleus assay into clinical practice: from observational studies to randomized controlled trials. Mutation Research/Reviews in Mutation Research, 788, 108390. doi:10.1016/j.mrrev.2021.108390
CrossrefPubMedGoogle Scholar

Burkat, V. P. (Ed.). (2005). Metodyky naukovykh doslidzhen iz selektsii, henetyky ta biotekhnolohii u tvarynnytstvi [Methods of scientific research on breeding, genetics and biotechnology in animal husbandry]. Kyiv: Agrarian Science. (In Ukrainian)
Google Scholar

Gashchak, S. P. (2018). Pozvonochnie zhivotnie Chernobilskoi zoni (Chernobilskogo radiatsionno-ekologicheskogo biosfernogo zapovednika), vklyuchennie v Krasnuyu Knigu Ukraini (2009 god) [Vertebrates of Chernobyl zone (Chernobyl radiation and ecological biosphere reserve), included into Red list of Ukraine (2009)]. Problems of Chernobyl Exclusion Zone, 18, 5-54. Retrieved from https://zapovidnyk.org.ua/files-pdf/h-tvari2.pdf#page=5 (In Russian)
Google Scholar

Ghosh, S., Carden, C. F., Juras, R., Mendoza, M. N., Jevit, M. J., Castaneda, C., Phelps, O., Dube, J., Kelley, D. E., Varner, D. D., Love, C. C., & Raudsepp, T. (2020). Two novel cases of autosomal translocations in the horse: warmblood family segregating t(4;30) and a cloned Arabian with a de novo t(12;25). Cytogenetic and Genome Research, 160(11-12), 688-697. doi.org/10.1159/000512206
CrossrefPubMedGoogle Scholar

King, S. R. B., Boyd, L., Zimmermann, W., & Kendall, B. E. (2015). Equus ferus. The IUCN Red List of Threatened Species 2015. e.T41763A97204950. doi:10.2305/iucn.uk.2015-2.rlts.t41763a45172856.en
CrossrefGoogle Scholar

Lanovenko, O. H. (2020). Mikroyadernyj test bukalnogo epiteliyu rotovoyi porozhnyny lyudyny ta osoblyvosti jogo vykorystannya [Micronuclear test of the buccal epiteliyum of the human oral cavity and features of its use]. Kherson. (In Ukrainian)

Medison: rozchyn dlia iniektsii (2017). [Madison: solution for injection: leaflet-tab. Addition], Brovafarma LLC. Kyiv. Retrieved from https://brovapharma.ua/medison_10-ml (In Ukrainian)

Mokhnachova, N. B. (2022). Genetic structure of the Ukrainian water buffalo population by ISSR-PCR markers. The Animal Biology, 24(1), 19-24. doi:10.15407/animbiol24.01.019 (In Ukrainian)
CrossrefGoogle Scholar

Nei, M. (1972). Genetic distance between populations. The American Naturalist, 106(949), 283-292. doi:10.1086/282771
CrossrefGoogle Scholar

Nei, M. (1987). Molecular evolutionary genetics. New York: Columbia University Press. doi:10.7312/nei-92038
CrossrefGoogle Scholar

Reverson: rozchyn dlia iniektsii (2020). [Reverson: solution for injection: leaflet-tab. Addition], Brovafarma LLC. Kyiv. Retrieved from https://brovapharma.ua/reverson-10-ml (In Ukrainian)

Shilton, C. A., Kahler, A., Davis, B. W., Crabtree, J. R., Crowhurst, J., McGladdery, A. J., Wathes, D. C., Raudsepp, T., & de Mestre, A. M. (2020). Whole genome analysis reveals aneuploidies in early pregnancy loss in the horse. Scientific Reports, 10(1), 13314. doi:10.1038/s41598-020-69967-z
CrossrefPubMedPMCGoogle Scholar

Starodub, L. F. (2023). Cytogenetic variability of the Hutsul breed of horses. Animal Breeding and Genetics, 65, 191-195. doi:10.31073/abg.65.18 (In Ukrainian)
CrossrefGoogle Scholar

Suprun, I. O., & Kurylenko, Yu. F. (2014). Monitoryng genetychnogo polimorfizmu populyacij konej za vykorystannya ISSR-markeriv [Monitoring of genetic polymorphism of horse populations using ISSR markers]. Bulletin of Sumy NAU, 2/1(24), 181-186. (In Ukrainian)
Google Scholar

Vasyliuk, O., Lastikova, L., & Parkhomenko, V. (2020a). 1928. In V. Havrylenko (Ed.), Askaniia-Nova. Antolohiia publikatsii ta drukovanykh vydan (1845-1945) [Askania-Nova. Anthology of publications and printed editions (1845-1945)] (Vol. 4). Kyiv; Chernivtsi: Druk Art. Retrieved from https://uncg.org.ua/wp-content/uploads/2020/07/Askaniia-Nova-Tom-4_compressed.pdf (In Ukrainia)

Vasyliuk, O., Lastikova, L., & Parkhomenko, V. (2020b). 1929-1931. In V. Havrylenko (Ed.), Askaniia-Nova. Antolohiia publikatsii ta drukovanykh vydan (1845-1945) [Askania-Nova. Anthology of publications and printed editions (1845-1945)] (Vol. 5). Kyiv; Chernivtsi: Druk Art. Retrieved from https://uncg.org.ua/wp-content/uploads/2021/09/Askaniia-Nova_T.-5_2020_compr.pdf (In Ukrainia)

Zietkiewicz, E., Rafalski, A., & Labuda, D. (1994). Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics, 20(2), 176-183. doi:10.1006/geno.1994.1151
CrossrefPubMedGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Lyubov Starodub, Mykola Porhun, Nataliya Mokhnachova, Andrii Berezovsky, Nataliya Yasinetska, Kyrylo Kopylov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.