Na+, K+-ATPase AND Ca2+, Mg2+-ATPase ACTIVITY IN SPERMATOZOA OF INFERTILE MEN WITH DIFFERENT FORMS OF PATHOSPERMIA

O. I. Meskalo, R. V. Fafula, E. I. Lychkovskyj, Z. D. Vorobets


DOI: http://dx.doi.org/10.30970/sbi.1102.524

Abstract


Ion-exchanging ATPases play an essential role in biology of spermatozoa, inclu­ding their motility, hyperactivation, chemotaxis, acrosome reaction etc. The aim of present study was to analyze Na+, K+-ATPase and Ca2+, Mg2+-ATPase activities in spermatozoa of the infertile men with different forms of pathospermia and to explore a possible role that they may play in male infertility. A significant reduction in ouabain-sensitive Na+, K+-ATPase activity in sperm cells of infertile men with oligozoo-, asthenozoo-, oligoasthenozoo- and leucocytospermia was shown. The results show that asthenozoo-, oligoasthenozoo- and leucocytospermic patients have significantly impaired thapsigargin-sensitive and thapsigargin-insensitive Ca2+, Mg2+-ATPase activity compared to healthy men. However, Ca2+, Mg2+-ATPase activity has a tendency to increase in patients with oligozoospermia. The depressed ATPase activity in the infertile men could be due to a reduction in intracellular adenosine triphosphate level and damage of spermal membranes caused by lipid peroxidation products. The most significant decrease in Ca2+, Mg2+-ATPase activity was observed in patients  with leucocytospermia which could be explained by an excessive formation of the reactive oxygen species by the leucocytes. It is suggested that a decrease in the ion-exchanging ATPase activity may damage sperm functions and be one of possible causes of male infertility.


Keywords


Na+, K+-ATPase, Ca2+, Mg2+-ATPase, male infertility, pathospermia

Full Text:

PDF

References


1. Aravindan G.R., Fomin V.P., Naik U.P. et al. CASK interacts with PMCA4b and JAM-A on the mouse sperm flagellum to regulate Ca2+ homeostasis and motility. J. Cell Physiol, 2012; 227: 3138-3150.
https://doi.org/10.1002/jcp.24000
PMid:22020416 PMCid:PMC3383836

2. Aziz N., Agarwal A., Lewis-Jones I. et al. Novel associations between specific sperm morphological defects and leukocytospermia. Fertil Steril, 2004; 82(3): 621-627.
https://doi.org/10.1016/j.fertnstert.2004.02.112
PMid:15374705

3. Cartwright E.J., Neyses L. Evaluation of plasma membrane calcium/calmodulin-dependent ATPase isoform 4 as a potential target for fertility control. Handb. Exp. Pharmacol, 2010; (198): 79-95.
https://doi.org/10.1007/978-3-642-02062-9_6
PMid:20839088

4. Dokmeci D. Oxidative stress, male infertility and the role of carnitines. Folia Medica (Plovdiv), 2005; 47(1): 26-30.

5. Herrick S.B., Schweissinger D.L., Kim S.W. et al. The acrosomal vesicle of mouse sperm is a calcium store. J. Cell Physiol, 2005; 202: 663-671.
https://doi.org/10.1002/jcp.20172
PMid:15389568

6. Jimenez T., Sanchez G., Blanco G. Activity of the Na, K-ATPase alpha4 isoform is regulated during sperm capacitation to support sperm motility. J. Androl, 2012; 33(5): 1047-1057.
https://doi.org/10.2164/jandrol.111.015545
PMid:22441762

7. Jimenez-Gonzalez C., Michelangeli F., Harper C.V. et al. Calcium signalling in human spermatozoa pp. a specialized 'toolkit' of channels, transporters and stores. Hum. Reprod. Update, 2006; 12: 253-267.
https://doi.org/10.1093/humupd/dmi050
PMid:16338990

8. Jung J.H., Kim M.H., Kim J. et al. Treatment of Leukocytospermia in Male Infertility: A Systematic Review. World J. Mens Health, 2016; 34(3): 165-172.
https://doi.org/10.5534/wjmh.2016.34.3.165
PMid:28053945 PMCid:PMC5209556

9. Koçak-Toker N., Aktan G., Aykaç-Toker G. The role of Na, K-ATPase in human sperm motility. Int. J. Androl, 2002; 25(3): 180-185.
https://doi.org/10.1046/j.1365-2605.2002.00346.x
PMid:12031047

10. Kumosani T.A., Elshal M.F., Al-Jonaid A.A. et al. The influence of smoking on semen quality, seminal microelements and Ca2+-ATPase activity among infertile and fertile men. Clinical. Biochemistry, 2008; 41: 1199-1203.
https://doi.org/10.1016/j.clinbiochem.2008.07.013
PMid:18708043

11. Lesovoy V.N., Panasovskiy N.L., Garagatiy I.A. et al. Anamnestical and social aspects of the development of male obsturation infertility. Medicine Today and Tomorrow, 2009; 3-4: 106-110. (In Ukrainian)

12. McLean D.J., Jones L.G. Jr., Froman D.P. Reduced glucose transport in sperm from roosters (Gallus domesticus) with heritable subfertility. Biol. Reprod, 1997; 57(4): 791-795.
https://doi.org/10.1095/biolreprod57.4.791
PMid:9314582

13. Muriel P., Castaneda G., Ortega M. et al. Insights into the mechanism of erythrocyte Na+/K+-ATPase inhibition by nitric oxide and peroxynitrite anion. J. Applied Toxicology, 2003; 23: 275-278.
https://doi.org/10.1002/jat.922
PMid:12884412

14. Ni J., Li QL., Zhang W. et al. Changes in soluble interleukin-2 receptor level in serum and Na+-K+-exchanging ATPase activityin semen of infertile men caused by antisperm antibody. Asian J. Androl, 2000; 2(2): 151-153.

15. Okunade G.W., Miller M.L., Pyne G.J. et al. Targeted ablation of plasma membrane Ca2+ ATPase (PMCA) 1 and 4 indicates a major housekeeping function for Pmca1 and a critical role in hyperactivated sperm motility and male fertility for Pmca4. J. Biol. Chem, 2004; 279: 33742-33750.
https://doi.org/10.1074/jbc.M404628200
PMid:15178683

16. Olli K.E., Li K., Galileo D.S. et al. Plasma membrane calcium ATPase 4 (PMCA4) co-ordinates calcium and nitric oxide signaling in regulating murine sperm functional activity. J. Cell Physiol, 2017; 9999: 1-12.
https://doi.org/10.1002/jcp.25882
PMid:28247940 PMCid:PMC5581300

17. Ostapchenko L. I., Mikhailik I. V. Biological membranes: methods for studying the structure and function. Kyiv: Publishing Center "Kyiv University", 2006; 215 p. (In Ukrainian)

18. Ramasamy R., Campbell В., Reifsnyder J.E. Overweight men with nonobstructive ospermia have worse pregnancy outcomes after ssection testicular sperm extraction. Fertil. Steril, 2013; 99(2): 372-376.
https://doi.org/10.1016/j.fertnstert.2012.10.025
PMid:23122830

19. Sanchez G., Nguyen A.T., Timmerberg B. et al. The Na, K-ATPase a4 isoform from humans has distinctenzymatic properties and is important for sperm motility. Molecular Human Reproduction, 2006; 12(9): 565-576.
https://doi.org/10.1093/molehr/gal062
PMid:16861705

20. Schuh K., Cartwright E.J., Jankevics E. et al. Plasma membrane Ca2+ ATPase 4 is required for sperm motility and male fertility. J. Biol. Chem, 2004; 279(27): 28220-28226.
https://doi.org/10.1074/jbc.M312599200
PMid:15078889

21. Triphan J., Aumüller G., Brandenburger T. et al. Localization and regulation of plasma membrane Ca(2+)-ATPase in bovine spermatozoa. Eur. J. Cell Biol, 2007; 86: 265-273.
https://doi.org/10.1016/j.ejcb.2007.02.003
PMid:17397965

22. Veklich T.O., Kocheshkova N.S., Rodik R.V. et al. Comparative research on the influence of calixarenes on Na+, K+-АТРase activity in the plasma membrane of contractile and motile cells. Ukr. Biokhim. Journ, 2007; 79(30): 20-29. (In Ukrainian)

23. Vignini A., Buldreghini E., Nanetti L. et al. Free thiols in human spermatozoa: are Na+/K+-ATPase, Ca2+-ATPase activities involved in sperm motility through peroxynitrite formation? Reprod. Bio­med. Online, 2009; 18(1): 132-140.
https://doi.org/10.1016/S1472-6483(10)60435-X

24. Vívenes C.Y., Peralta-Arias R.D., Camejo M.I. et al. Biochemical identification of dynein-ATPase activity in human sperm. Z. Naturforsch. C, 2009; 64(9-10): 747-753.
https://doi.org/10.1515/znc-2009-9-1022

25. Vorobets D.Z., Оnufrovych О.K., Fafula R.V. et al. The NO-synthase pathway of L-arginine transformation in spermatozoa of infertile men with different forms of pathospermia. Exper. and Clin. Phys. and Biochem, 2016; 3(75): 47-53.
https://doi.org/10.25040/ecpb2016.03.047

26. WHO Laboratory manual for the examination of human semen and sperm-cervical mucus interaction. Cambridge University Press, 1999. 128 p.

27. Williams K.M., Ford W.C. Effects of Ca-ATPase inhibitors on the intracellular calcium activity and motility of human spermatozoa. Int. J. Androl, 2003; 26: 366-375.
https://doi.org/10.1111/j.1365-2605.2003.00438.x
PMid:14636222

28. Zhang L., Liu Z., Li X. et al. Low long non-coding RNA HOTAIR expression is associated with down-regulation of Nrf2 in the spermatozoa of patients with asthenozoospermia or oligoasthenozoospermia. Int. J. Clin. Exp. Pathol, 2015; 8(11): 14198-14205.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.