PROAPOPTOTIC CHANGES OF ERYTHROCYTES DANIO RERIO INFLUENCED BY COPPER CATIONS

M. R. Vergolyas, R. O. Bilyy, R. S. Stoika, V. V. Goncharuk


DOI: http://dx.doi.org/10.30970/sbi.0302.041

Abstract


Toxic effect of the cations of copper of aquatic surrounding in the concentration 0.75 mg/l during four days on Danio rerio fishes is revealed as the increase in the amount of erythrocytes of peripheral blood with micronucleus and double nuclei. In addition, the characteristic signs of apoptosis in blood cells where observed, particularly externalization of phosphatidyl serine, determined by annexin V staining, increase in the intensity of binding of galactose-specific RCA lectin and mannose-specific NPL lectin, suggesting the increase of the level of exposure for corresponding surface glycoside residues on the cell surface, and also internucleosomal DNA fragmentation. The importance of the utilization of the metods of the apoptotic cells detection in fish for the study of xenobiotic influence on the organism was proved.


Keywords


erythrocytes, DNA, Danio rerio, micronuclei, apoptosis, toxicity

References


1. Антонюк В.О. Лектини та їх сировинні джерела. Львів: Кварт, 2005. 554 с.

2. Верголяс М.Р., Кучеренко Т.В., Архипчук В.В. Сравнительный анализ частоты проявления клеток с микроядрами и двойными ядрами у карася Carassius auratus в природных и лабораторных условиях. Досягнення і проблеми генетики, селекції та біотехнології. Збірник наукових праць. Київ: ЛОГОС, 2007; 1: 203-206.

3. Гончарук В.В., Верголяс М.Р., Веялкина Н.Н. Оценка генотоксического влияния тяжелых металлов на клетки рыб. Збірник наукових праць Вінницького державного аграрного університету. Вінниця, 2008; 34(1): 171-176.

4. Козинец Г.И., Макаров В.А. Исследование системы крови в клинической практике. М.: Триада-Х, 1997. 480 с.

5. Фильченков А.А. Современные технологии количественной оценки апоптоза и их применение в экспериментальной и клинической онкологии. Київ: ДІА, 2003. 76 с.

6. Allen T.M., Austin G.A., Chonn A. et al. Uptake of liposomes by cultured mouse bone marrow macrophages: influence of liposome composition and size. Biochim. Biophys. Acta, 1991; 1061 (1): 56-64.
https://doi.org/10.1016/0005-2736(91)90268-D

7. Arkhipchuk V.V., Garanko N.N. Using the nucleolar biomarker and the micronucleus test on in vivo fish fin cells. Ecotoxicology and Environmental Safety, 2005; 62: 42-52.
https://doi.org/10.1016/j.ecoenv.2005.01.001
PMid:15978290

8. Bilyy R., Stoika R. Search for novel cell surface markers of apoptotic cells. Autoimmunity, 2007; 40: 249-253.
https://doi.org/10.1080/08916930701358867
PMid:17516205

9. Bilyy R.O., Antonyuk V.O., Stoika R.S. Cytochemical study of role of alpha-d-mannose- and beta-d-galactose-containing glycoproteins in apoptosis. J. Mol. Histol, 2004; 35: 829-838.
https://doi.org/10.1007/s10735-004-1674-z
PMid:15609096

10. Bilyy R.O., Stoika R.S. Lectinocytochemical detection of apoptotic murine leukemia L1210 cells. Cytometry, 2003; 56 A: 89-95.
https://doi.org/10.1002/cyto.a.10089
PMid:14608636

11. Decordier I., Dillen L., Cundari E., Kirsch-Volders M. Elimination of micronucleated cells by apoptosis after treatment with inhibitors of microtubules. Mutagenesis, 2002; 17(4): 337-344.
https://doi.org/10.1093/mutage/17.4.337
PMid:12110631

12. Ergene S., Cavaş T., Celik A. et al. Evaluation of river water genotoxicity using the piscine micronucleus test. Environ. Mol. Mutagen, 2007; 48 (6): 421-429.
https://doi.org/10.1002/em.20291
PMid:17370337

13. Fadok V.A., Voelker D.R., Campbell P.A. et al. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J. Immunol, 1992; 148(7): 2207-2216.

14. Fimognari C., Nüsse M., Cesari R. et al. Micronuclei induction, cell cycle delay and apoptosis as markers of cellular stress caused by ursodeoxycholic acid in human lymphocytes. Mut. Res, 2001; 495: 1-9.
https://doi.org/10.1016/S1383-5718(01)00197-8

15. Franz S., Herrmann K., Fuhrnrohr B. et al. After shrinkage apoptotic cells expose internal membrane-derived epitopes on their plasma membranes. Cell Death. Differ, 2007; 14: 733-742.
https://doi.org/10.1038/sj.cdd.4402066
PMid:17170754

16. Hermanson G.T. Bioconjugate Techniques. San Diego, CA, USA: Academic Press, 1996. 785 р.

17. Hernández P.P., Allende M.L. Zebrafish (Danio rerio) as a model for studying the genetic basis of copper toxicity, deficiency, and metabolism. American Journ. of Clinical Nutrition, 2008; 88 (3): 835-839.
https://doi.org/10.1093/ajcn/88.3.835S
PMid:18779304

18. Herrmann M., Lorenz H.M., Voll R. et al. A rapid and simple method for the isolation of apoptotic DNA fragments. Nucleic Acids Res, 1994; 22: 5506-5507.
https://doi.org/10.1093/nar/22.24.5506
PMid:7816645 PMCid:PMC332111

19. Huang D., Zhang Y., Wang Y. et al. Assessment of the genotoxicity in toad Bufo raddei exposed to petrochemical contaminants in Lanzhou Region, China. Mutat. Res, 2007; 629: 81-88.
https://doi.org/10.1016/j.mrgentox.2007.01.007
PMid:17344091

20. Mediouni C., Houlné G., Chabouté M.-E. et al. Cadmium and copper genotoxicity in plants. Biosaline Agriculture and High Salinity Tolerance. Basel: Birkhäuser, 2008. 325-333.
https://doi.org/10.1007/978-3-7643-8554-5_30

21. Prá D., Franke S. I., Giulian R. et al. Genotoxicity and mutagenicity of iron and copper in mice. Bio. Metals, 2008; 21 (3): 289-297.
https://doi.org/10.1007/s10534-007-9118-3
PMid:17926008

22. Reutelingsperger C.P., van Tilborg G.A., Mulder W.J. et al. Annexin A5-Functionalized Bimodal Lipid-Based Contrast Agents for the Detection of Apoptosis. Bioconjug. Chem, 2006; 17 (3): 741-749.
https://doi.org/10.1021/bc0600259
PMid:16704213

23. Waters M.D., Stack H.F., Jackson M.A. Genetic toxicology data in the evaluation of potential human environmental carcinogens. Mutat. Res, 1999; 437: 21-49.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2009 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.