MAIN MECHANISMS OF THE INITIATION AND DEVELOPMENT OF DIABETIC COMPLICATIONS: THE ROLE OF NITRATIVE STRESS
DOI: http://dx.doi.org/10.30970/sbi.0402.085
Abstract
In the review described the main mechanisms of the oxidative stress initiation in the mitochondria electron-transport chain under the hyperglycaemia condition. It is described the main metabolic and signal-transduction mechanisms, activation of which takes place under the chronic diabetic complications, and which leads to the increase of oxidative stress. It is analised in detail the role of nitric oxide in the biological systems and its properties under the condition of oxidative stress, especially under the diabetes mellitus. The results of the main biological targets for the peroxinitrite and the molecular markers of the diabetic complications were summarized.
Keywords
Full Text:
PDF (Українська)References
1. Akizuki E., Akaike T., Okamoto S. et al. Role of NO and superoxide in acute cardiac allograft rejection in rats. Proc. Soc. Exp. Biol. Med, 2000; 225(2): 151-159. | |
| |
2. Atkins R.C., Zimmet P. Diabetic kidney disease: act now or pay later. Saudi. J. Kidney Dis. Transpl, 2010; 21(2): 217-221. | |
| |
3. Baker P.R., Schopfer F.J., Sweeney S., Freeman B.A. Red cell membrane and plasma linoleic acid nitration products: synthesis, clinical identification, and quantitation. Proc. Natl. Acad. Sci. USA, 2004; 101 (32): 11577-11582. | |
| |
4. Beckman J.S., Beckman T.W., Chen J. et al. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. USA, 1990; 87(4), 1620-1624. | |
| |
5. Beckman J.S., Koppenol W.H. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am. J. Physiol, 1996; 271(5 Pt 1): C1424-1437. | |
| |
6. Bishop A., Anderson J.E. NO signaling in the CNS: from the physiological to the pathological. Toxicology, 2005; 208(2): 193-205. | |
| |
7. Bonini M.G., Radi R., Ferrer-Sueta G. et al. Direct EPR detection of the carbonate radical anion produced from peroxynitrite and carbon dioxide. J. Biol. Chem, 1999; 274(16): 10802-10806. | |
| |
8. Boulares A.H., Yakovlev A.G., Ivanova V. et al. Role of poly(ADP-ribose) polymerase (PARP) cleavage in apoptosis. Caspase 3-resistant PARP mutant increases rates of apoptosis in transfected cells. J. Biol. Chem, 1999; 274(33): 22932-22940. | |
| |
9. Brennan M.L., Wu W., Fu X. et al. A tale of two controversies: defining both the role of peroxidases in nitrotyrosine formation in vivo using eosinophil peroxidase and myeloperoxidase-deficient mice, and the nature of peroxidase-generated reactive nitrogen species. J. Biol. Chem, 2002; 277(20): 17415-17427. | |
| |
10. Brito C., Naviliat M., Tiscornia A.C. et al.Peroxynitrite inhibits T lymphocyte activation and proliferation by promoting impairment of tyrosine phosphorylation and peroxynitrite-driven apoptotic death. J. Immunol, 1999; 162(6): 3356-3366. | |
| |
11. Brown G.C. Nitric oxide and mitochondria. Front. Biosci, 2007; 12: 1024-1033. | |
| |
12. Brown G.C., Borutaite V. Inhibition of mitochondrial respiratory complex I by nitric oxide, peroxynitrite and S-nitrosothiols. Biochim. Biophys. Acta, 2004; 1658(1-2): 44-49. | |
| |
13. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes, 2005; 54(6): 1615-1625. | |
| |
14. Bruckdorfer R. The basics about nitric oxide. Mol. Aspects Med, 2005; 26 (1-2): 3-31. | |
| |
15. Brüne B., Zhou J. Nitric oxide and superoxide: interference with hypoxic signaling. Cardiovasc. Res, 2007; 75(2): 275-282. | |
| |
16. Buchczyk D.P., Grune T., Sies H., Klotz L.O. Modifications of glyceraldehyde-3-phosphate dehydrogenase induced by increasing concentrations of peroxynitrite: early recognition by 20S proteasome. Biol. Chem, 2003; 384(2): 237-241. | |
| |
17. Burney S., Caulfield J.L., Niles J.C. et al. The chemistry of DNA damage from nitric oxide and peroxynitrite. Mutat. Res, 1999; 424 (1-2): 37-49. | |
| |
18. Chen Y.R., Chen C.L., Chen W. et al. Formation of protein tyrosine ortho-semiquinone radical and nitrotyrosine from cytochrome c-derived tyrosyl radical. J. Biol. Chem, 2004; 279(17): 18054-18062. | |
| |
19. Chi Q., Wang T., Huang K. Effect of insulin nitration by peroxynitrite on its biological activity. Biochem. Biophys. Res. Commun, 2005; 330(3): 791-796. | |
| |
20. Cole A.R., Astell A., Green C., Sutherland C. Molecular connexions between dementia and diabetes. Neurosci. Biobehav, 2007; 31(7): 1046-1063. | |
| |
21. Cosentino F., Hishikawa K., Katusic Z.S., Luscher T.F. High glucose increases nitric oxide synthase expression and superoxide anion generation in human aortic endothelial cells. Circulation, 1997; 96(1): 25-28. | |
| |
22. Crosswhite P., Sun Z. Nitric oxide, oxidative stress and inflammation in pulmonary arterial hypertension. J. Hypertens, 2010; 28(2): 201-212. | |
| |
23. Denicola A., Radi R. Peroxynitrite and drug-dependent toxicity. Toxicology, 2005; 208(2): 273-288. | |
| |
24. Dicks A.P., Williams D.L. Generation of nitric oxide from S-nitrosothiols using protein-bound Cu2+ sources. Chem. Biol, 1996; 3(8): 655-659. | |
| |
25. Drel V.R., Mashtalir N., Ilnytska O. et al. The leptin-deficient (ob/ob) mouse: a new animal model of peripheral neuropathy of type 2 diabetes and obesity. Diabetes, 2006; 55(12): 3335-3343. | |
| |
26. Drel V.R., Pacher P., Vareniuk I. et al. Evaluation of the peroxynitrite decomposition catalyst Fe(III) tetra-mesitylporphyrin octasulfonate on peripheral neuropathy in a mouse model of type 1 diabetes. Int. J. Mol. Med, 2007; 20(6): 783-792. | |
| |
27. Drel V.R., Pacher P., Vareniuk I. et al. A peroxynitrite decomposition catalyst counteracts sensory neuropathy in streptozotocin-diabetic mice. Eur. J. Pharmacol, 2007; 569(1-2): 48-58. | |
| |
28. Drel V.R., Xu W., Zhang J. et al. Poly(ADP-ribose)polymerase inhibition counteracts cataract formation and early retinal changes in streptozotocin-diabetic rats. Invest. Ophthalmol. Vis. Sci, 2009; 50(4): 1778-1790. | |
| |
29. Drel V.R., Xu W., Zhang J. et al. Poly(Adenosine 5′-diphosphate-ribose) polymerase inhibition counteracts multiple manifestations of experimental type 1 diabetic nephropathy. Endocrinology, 2009; 150(12): 5273-5283. | |
| |
30. El-Remessy A.B., Bartoli M., Platt D.H. et al. Oxidative stress inactivates VEGF survival signaling in retinal endothelial cells via PI 3-kinase tyrosine nitration. J. Cell Sci, 2005; 118(Pt. 1): 243-252. | |
| |
31. Eu J.P., Liu L., Zeng M., Stamler, J.S. An apoptotic model for nitrosative stress. Biochemistry, 2000; 39(5): 1040-1047. | |
| |
32. Ferrer-Sueta G., Quijano C., Alvarez B., Radi R. Reactions of manganese porphyrins and manganese- superoxide dismutase with peroxynitrite. Methods Enzymol, 2002; 349: 23-37. | |
| |
33. Forsmark-Andree P., Persson B., Radi R. et al. Oxidative modification of nicotinamide nucleotide transhydrogenase in submitochondrial particles: effect of endogenous ubiquinol. Arch. Biochem. Biophys, 1996; 336(1): 113-120. | |
| |
34. Geller D.A., Billiar T.R. Molecular biology of nitric oxide synthases. Cancer Metastasis Rev, 1998; 17(1): 7-23. | |
| |
35. Goodwin D.C., Gunther M. R., Hsi L. C. et al. Nitric oxide trapping of tyrosyl radicals generated during prostaglandin endoperoxide synthase turnover. Detection of the radical derivative of tyrosine 385. J. Biol. Chem, 1998; 273(15): 8903-8909. | |
| |
36. Gorbunov N.V., Osipov A.N., Day B.W. et al. Reduction of ferrylmyoglobin and ferrylhemoglobin by nitric oxide: a protective mechanism against ferryl hemoprotein-induced oxidations. Biochemistry, 1995; 34(20): 6689-6699. | |
| |
37. Gorg B., Bidmon H.J., Keitel V. et al. Inflammatory cytokines induce protein tyrosine nitration in rat astrocytes. Arch. Biochem. Biophys, 2006; 449(1-2): 104-114. | |
| |
38. Govers R., Coster A.C., James D.E. Insulin increases cell surface GLUT4 levels by dose dependently discharging GLUT4 into a cell surface recycling pathway. Mol. Cell. Biol, 2004; 24(14): 6456-6466. | |
| |
39. Gow A., Duran D., Thom S.R. Ischiropoulos H. Carbon dioxide enhancement of peroxynitrite-mediated protein tyrosine nitration. Arch. Biochem. Biophys, 1996; 333(1): 42-48. | |
| |
40. Greenacre S.A., Ischiropoulos H. Tyrosine nitration: localisation, quantification, consequences for protein function and signal transduction. Free Radic. Res, 2001; 34(6): 541-581. | |
| |
41. Guidarelli A., Fiorani M., Cantoni O. Enhancing effects of intracellular ascorbic acid on peroxynitrite-induced U937 cell death are mediated by mitochondrial events resulting in enhanced sensitivity to peroxynitrite-dependent inhibition of complex III and formation of hydrogen peroxide. Biochem. J, 2004; 378(Pt. 3): 959-966. | |
| |
42. Ha H.C., Snyder S.H. Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proc. Natl. Acad. Sci. USA, 1999; 96(24): 13978-13982. | |
| |
43. Han D., Canali R., Garcia J. et al. Sites and mechanisms of aconitase inactivation by peroxynitrite: modulation by citrate and glutathione. Biochemistry, 2005; 44(36): 11986-11996. | |
| |
44. Haqqani A.S., Kelly J.F., Birnboim H.C. Selective nitration of histone tyrosine residues in vivo in mutatect tumors. J. Biol. Chem, 2002; 277(5): 3614-3621. | |
| |
45. Hogg N., Kalyanaraman B. Nitric oxide and lipid peroxidation. Biochim. Biophys. Acta, 1999; 1411(2-3): 378-384. | |
| |
46. Jang B., Han S. Biochemical properties of cytochrome c nitrated by peroxynitrite. Biochimie, 2006; 88(1): 53-58. | |
| |
47. Jansson E.A., Huang L., Malkey R. et al. A mammalian functional nitrate reductase that regulates nitrite and nitric oxide homeostasis. Nat. Chem. Biol, 2008; 4(7): 411-417. | |
| |
48. Kelm M., Feelisch M., Deussen A. et al. Release of endothelium derived nitric oxide in relation to pressure and flow. Cardiovasc. Res, 1991; 25(10): 831-836. | |
| |
49. Kim P.K., Kwon Y.G., Chung H.T., Kim Y.M. Regulation of caspases by nitric oxide. Ann. N Y Acad. Sci, 2002; 962: 42-52. | |
| |
50. King H., Aubert R.E., Herman W.H. Global burden of diabetes, 1995-2025: prevalence, numerical estimates, and projections. Diabetes Care, 1998; 21(9): 1414-1431. | |
| |
51. Klebanoff S.J. Reactive nitrogen intermediates and antimicrobial activity: role of nitrite. Free. Radic. Biol. Med, 1993; 14(4): 351-360. | |
| |
52. Klotz L.O., Schieke S.M., Sies H., Holbrook N.J. Peroxynitrite activates the phosphoinositide 3-kinase/Akt pathway in human skin primary fibroblasts. Biochem. J, 2000; 352(Pt. 1): 219-225. | |
| |
53. Knight T.R., Kurtz A., Bajt M.L. et al. Vascular and hepatocellular peroxynitrite formation during acetaminophen toxicity: role of mitochondrial oxidant stress. Toxicol. Sci, 2001; 62(2): 212-220. | |
| |
54. Kosenko E., Llansola M., Montoliu C. et al. Glutamine synthetase activity and glutamine content in brain: modulation by NMDA receptors and nitric oxide. Neurochem. Int, 2003; 43(4-5): 493-499. | |
| |
55. Lancaster J.R. Simulation of the diffusion and reaction of endogenously produced nitric oxide. Proc. Natl. Acad. Sci. USA, 1994; 91(17): 8137-8141. | |
| |
56. Lee J.R., Kim J.K., Lee S.J., Kim K.P. Role of protein tyrosine nitration in neurodegenerative diseases and atherosclerosis. Arch. Pharm. Res, 2009; 32(8):1109-1118. | |
| |
57. Leone A.M., Palmer R.M., Knowles R.G. et al. Constitutive and inducible nitric oxide synthases incorporate molecular oxygen into both nitric oxide and citrulline. J. Biol. Chem, 1991; 266(35): 23790-23795. | |
| |
58. Mallozzi C., Di Stasi A.M., Minetti M. Peroxynitrite modulates tyrosine-dependent signal transduction pathway of human erythrocyte band 3. FASEB J, 1997; 11(14): 1281-1290. | |
| |
59. Marcondes S., Turko I.V., Murad F. Nitration of succinyl-CoA:3-oxoacid CoA-transferase in rats after endotoxin administration. Proc. Natl. Acad. Sci. USA, 2001; 98(13): 7146-7151. | |
| |
60. Martyn J.A., Kaneki M., Yasuhara S. Obesity-induced insulin resistance and hyperglycemia: etiologic factors and molecular mechanisms. Anesthesiology, 2008; 109(1): 137-148. | |
| |
61. Merriman-Smith B.R., Krushinsky A., Kistler J., Donaldson P.J. Expression patterns for glucose transporters GLUT1 and GLUT3 in the normal rat lens and in models of diabetic cataract. Invest. Ophthalmol. Vis. Sci, 2003; 44(8): 3458-3466. | |
| |
62. Mülsch A., Mordvintcev P.I., Vanin A.F., Busse R. Formation and release of dinitrosyl iron complexes by endothelial cells. Biochem. Biophys. Res. Commun, 1993; 196(3): 1303-1308. | |
| |
63. Neumann P., Gertzberg N., Vaughan E. et al. Peroxynitrite mediates TNF-induced endothelial barrier dysfunction and nitration of actin. Am. J. Physiol. Lung. Cell Mol. Physiol, 2006; 290(4): L674-L684. | |
| |
64. Nielsen V.G., Crow J.P., Mogal A. et al. Peroxynitrite decreases hemostasis in human plasma in vitro. Anesth. Analg, 2004; 99(1): 21-26. | |
| |
65. Nishikawa T., Edelstein D., Du X.L. et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature, 2000; 404(6779): 787-790. | |
| |
66. Nogueira-Machado J.A., Chaves M.M. From hyperglycemia to AGE-RAGE interaction on the cell surface: a dangerous metabolic route for diabetic patients. Expert. Opin. Ther. Targets, 2008; 12(7): 871-82. | |
| |
67. Nohl H., Staniek K., Kozlov A.V. The existence and significance of a mitochondrial nitrite reductase. Redox Rep, 2005; 10(6):281-286. | |
| |
68. Nomiyama T., Igarashi Y., Taka H. et al. Reduction of insulinstimulated glucose uptake by peroxynitrite is concurrent with tyrosine nitration of insulin receptor substrate-1. Biochem. Biophys. Res. Commun, 2004; 320(3): 639-647. | |
| |
69. Nowak P., Kolodziejczyk J., Wachowicz B. Peroxynitrite and fibrinolytic system: the effect of peroxynitrite on plasmin activity. Mol. Cell Biochem, 2004; 267(1-2): 141-146. | |
| |
70. Obrosova I.G., Drel V.R., Oltman C.L. et al. Role of nitrosative stress in early neuropathy and vascular dysfunction in streptozotocin-diabetic rats. Am. J. Physiol. Endocrinol. Metab, 2007; 293(6): E1645-55. | |
| |
71. Obrosova I.G., Drel V.R., Pacher P. et al. Oxidative-nitrosative stress and poly(ADP-ribose) polymerase (PARP) activation in experimental diabetic neuropathy: the relation is revisited. Diabetes, 2005; 54 (12): 3435-3441. | |
| |
72. Pacher P., Beckman J.S., Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev, 2007; 87(1): 315-424. | |
| |
73. Patel R.P., Moellering D., Murphy-Ullrich J. et al. Cell signaling by reactive nitrogen and oxygen species in atherosclerosis. Free Radic. Biol. Med, 2000; 28(12): 1780-1794. | |
| |
74. Pennathur S., Bergt C., Shao B. et al. Human atherosclerotic intima and blood of patients with established coronary artery disease contain high density lipoprotein damaged by reactive nitrogen species. J. Biol. Chem, 2004; 279(41): 42977-42983. | |
| |
75. Pufahl R.A., Singer C.P., Peariso K.L. et al. Metal ion chaperone function of the soluble Cu(I) receptor Atx1. Science, 1997; 278(5339): 853-856. | |
| |
76. Radi R., Beckman J.S., Bush K.M., Freeman B.A. Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J. Biol. Chem, 1991(7): 266, 4244-4250. | |
| |
77. Radi R., Cassina A., Hodara R. et al. Peroxynitrite reactions and formation in mitochondria. Free Radic. Biol. Med, 2002; 33(11): 1451-1464. | |
| |
78. Rees M.D., Kennett E.C., Whitelock J.M., Davies M.J. Oxidative damage to extracellular matrix and its role in human pathologies. Free Radic. Biol. Med, 2008; 44(12): 1973-2001. | |
| |
79. Rubbo H., Denicola A., Radi R. Peroxynitrite inactivates thiolcontaining enzymes of Trypanosoma cruzi energetic metabolism and inhibits cell respiration. Arch. Biochem. Biophys, 1994; 308(1): 96-102. | |
| |
80. Samouilov A., Kuppusamy P., Zweier J.L. Evaluation of the magnitude and rate of nitric oxide production from nitrite in biological systems. Arch. Biochem. Biophys, 1998; 357(1): 1-7. | |
| |
81. Schmitz H.D. Reversible nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase upon serum depletion. Eur. J. Cell. Biol, 2001; 80 (6): 419-427. | |
| |
82. Shao B., Bergt C., Fu X. et al. Tyrosine 192 in apolipoprotein A-I is the major site of nitration and chlorination by myeloperoxidase, but only chlorination markedly impairs ABCA1-dependent cholesterol transport. J. Biol. Chem, 2005; 280(7): 5983-5993. | |
| |
83. Shi H., Noguchi N., Xu Y., Niki E. Formation of phospholipid hydroperoxides and its inhibition by alpha-tocopherol in rat brain synaptosomes induced by peroxynitrite. Biochem. Biophys. Res. Commun, 1999; 257(3): 651-656. | |
| |
84. Shinohara M. Overexpression of glyoxalase-I in bovine endothelial cells inhibits intracellular advanced glycation endproduct formation and prevents hyperglycemia-induced increases in macromolecular endocytosis. J. Clin. Invest, 1998; 101(5): 1142-1147. | |
| |
85. Sokolovsky M., Riordan J.F., Vallee B.L. Conversion of 3-nitrotyrosine to 3-aminotyrosine in peptides and proteins. Biochem. Biophys. Res. Commun, 1967; 27(1): 20-25. | |
| |
86. Stamler J.S. S-nitrosothiols in the blood: roles, amounts, and methods of analysis. Circ. Res., 2004; 94(4): 414-417. | |
| |
87. Stone J.R., Marletta M.A. Spectral and kinetic studies on the activation of soluble guanylate cyclase by nitric oxide. Biochemistry, 1996; 35(4): 1093-1099. | |
| |
88. Sturgeon B.E., Glover R.E., Chen Y.R. et al. Tyrosine iminoxyl radical formation from tyrosyl radical/nitric oxide and nitrosotyrosine. J. Biol. Chem, 2001; 276(49): 45516-45521. | |
| |
89. Szabo C., Zingarelli B., O'Connor M., Salzman A.L. DNA strand breakage, activation of poly (ADP-ribose) synthetase, cellular energy depletion are involved in the cytotoxicity of macrophages and smooth muscle cells exposed to peroxynitrite. Proc. Natl. Acad. Sci. USA, 1996; 93(5): 1753-1758. | |
| |
90. Trostchansky A., Ferrer-Sueta G., Batthyany C. et al. Peroxynitrite flux-mediated LDL oxidation is inhibited by manganese porphyrins in the presence of uric acid. Free Radic. Biol. Med, 2003; 35(10): 1293-1300. | |
| |
91. Trumpower B.L. The protonmotive Q cycle: energy transduction by coupling of proton translocation to electron transfer by the cytochrome bc1 complex. J. Biol. Chem, 1990: 265(20): 11409-11412. | |
| |
92. Vanin A.F. Dinitrosyl iron complexes with thiolate ligands: physico-chemistry, biochemistry and physiology. Nitric Oxide, 2009; 21(1): 1-13. | |
| |
93. Vieira H.L., Belzacq A.S., Haouzi D. et al. The adenine nucleotide translocator: a target of nitric oxide, peroxynitrite, 4-hydroxynonenal. Oncogene, 2001; 20(32): 4305-4316. | |
| |
94. Wallace D.C. Diseases of the mitochondrial DNA. Annu. Rev. Biochem, 1992: 61: 1175-1212. | |
| |
95. Wilkinson-Berka J.L., Miller A.G. Update on the treatment of diabetic retinopathy. Scientific World Journal, 2008; 8: 98-120. | |
| |
96. Zhang Y., Hogg N. S-Nitrosothiols: cellular formation and transport. Free Radic. Biol. Med, 2005; 38(7): 831-838. | |
| |
97. Zou M.H., Cohen R., Ullrich V. Peroxynitrite and vascular endothelial dysfunction in diabetes mellitus. Endothelium, 2004; 11(2): 89-97. |
Refbacks
- There are currently no refbacks.
Copyright (c) 2010 Studia biologica
This work is licensed under a Creative Commons Attribution 4.0 International License.