PHYSIOLOGICAL AND BIOCHEMICAL RESPONSES OF SOYBEAN SEEDLINGS (GLYCINE MAX L.) TO α-TOCOPHEROL TREATMENT UNDER SALT STRESS
DOI: http://dx.doi.org/10.30970/sbi.1804.794
Abstract
Background. Salinity is one of the most important factors affecting the growth and productivity of plants. It creates stressful conditions for legumes at the initial phases of ontogenesis. The prospects of exogenous α-tocopherol usage to increase the salt resistance of Glycine max L. were studied. The aim of the work was to study the influence of salt stress and α-tocopherol on the growth of soybean and indicators characterizing the antioxidant system functioning.
Materials and methods. Soybean seedlings of the Oksana variety were the objects of our study. Seeds of the control group were soaked in distilled water, seeds of the experimental groups – in α-Toc acetic solutions in concentrations (0.01; 0.1; 0.5; 1.0 g/L). A 100 mM sodium chloride solution was used to create salinity. The samples of cotyledons, hypocotyls and primary roots of 10-day-old soybean were used for determination of biochemical parameters. Germination of seeds, raw weight, length of soybean hypocotyls and roots, content of TBA-reactive substances, carbonyl groups of oxidatively modified proteins, proline, catalase and ascorbate peroxidase activity were determined.
Results. It was established that salinity caused inhibition of soybean seed germination and growth. Pretreatment of soybean seeds with α-Toc (0.1 and 0.5 g/L) effectively increased germination and improved growth indicators of soybean. An increase in TBA-reactive substances and oxidatively modified proteins in hypocotyls and roots of salt-stressed plants was recorded. α-Toc reduced the level of peroxidation and oxidatively modified proteins of soybean seedlings under salinity. Proline synthesis increased during the development of the salt stress reaction, and its accumulation is an adaptive response of soybean plants. The pretreatment of α-Toc caused a significant increase of proline and stimulated catalase and ascorbate peroxidase activity in soybean seedling tissues under salt stress. However, a high concentration of α-Toc (1.0 g/L) slowed down the activity of antioxidant enzymes.
Conclusions. Our study suggests the participation of α-Toc in the formation of legumes salt resistance. The α-Toc pretreatment of soybean seeds improved germination and enhanced growth processes, normalized the oxidative state of the salt-stressed soybean seedlings by inhibiting peroxidation and reducing the degree of oxidatively modified proteins, stimulating the activity of antioxidant enzymes, and increasing the content of proline.
Keywords
Full Text:
PDFReferences
Açıkbaş, S., Özyazıcı, M. A., Bıçakçı, E., & Özyazıcı, G. (2023). Germination and seedling development performances of some soybean (Glycine max (L.) Merrill) cultivars under salinity stress. Turkish Journal of Range and Forage Science, 4(2), 108-118. doi:10.51801/turkjrfs.1387963 Crossref ● Google Scholar | ||||
| ||||
Aebi, H. (1984). Catalase in vitro. In: L. Packer (Ed.), Methods in enzymology (Vol. 105, pp. 121-126). Academic press. doi:10.1016/s0076-6879(84)05016-3 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Ahmad, R., Hussain, S., Anjum, M. A., Khalid, M. F., Saqib, M., Zakir, I., Hassan, A., Fahad, S., & Ahmad, S. (2019). Oxidative stress and antioxidant defense mechanisms in plants under salt stress. Plant Abiotic Stress Tolerance: Agronomic, Molecular and Biotechnological Approaches, 191-205. doi:10.1007/978-3-030-06118-0_8 Crossref ● Google Scholar | ||||
| ||||
Akyol, T. Y., Yilmaz, O., Uzilday, B., Uzilday, R. Ö. & Türkan, İ. (2020). Plant response to salinity: an analysis of ROS formation, signaling, and antioxidant defense. Turkish Journal of Botany, 44, 1-13. doi:10.3906/bot-1911-15 Crossref ● Google Scholar | ||||
| ||||
Ali, E., Hussain, S., Hussain, N., Kakar, K. U., Shah, J. M., Zaidi, S. H. R., Jan, M., Zhang, K., Khan, M. A., & Imtiaz, M. (2022). Tocopherol as plant protector: an overview of Tocopherol biosynthesis enzymes and their role as antioxidant and signaling molecules. Acta Physiologiae Plantarum, 44(2), 20. doi:10.1007/s11738-021-03350-x Crossref ● Google Scholar | ||||
| ||||
Alnusairi, G. S. (2022). Improved salt tolerance by α-tocopherol in soybean involves up-regulation of ascorbate-glutathione cycle and secondary metabolites. Journal of Applied Botany & Food Quality, 95, 31-42. Google Scholar | ||||
| ||||
Al-Omar, M. S., Naz, M., Mohammed, S. A. A., Mansha, M., Ansari, M. N., Rehman, N. U., Kamal, M., Mohammed, H. A., Yusuf, M., Hamad, A. M., Akhtar, N., & Khan, R. A. (2020). Pyrethroid-induced organ toxicity and anti-oxidant-supplemented amelioration of toxicity and organ damage: the protective roles of ascorbic acid and α-tocopherol. International Journal of Environmental Research and Public Health, 17(17), 6177. doi:10.3390/ijerph17176177 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Badr, E. A. E., Sadak, M. S., Bakhoum, G. S., & Khedr, H. H. A. (2021). Physiological response of sweet corn (Zea mays Ls.) grown under sandy soil to α-tocopherol treatments and different irrigation systems. Bulletin of the National Research Centre, 45(1), 1-10. doi:10.1186/s42269-020-00465-y Crossref ● Google Scholar | ||||
| ||||
Balasubramaniam, T., Shen, G., Esmaeili, N., & Zhang, H. (2023). Plants' response mechanisms to salinity stress. Plants, 12(12), 2253. doi:10.3390/plants12122253 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Banik, N., & Bhattacharjee, S. (2020). Complementation of ROS scavenging secondary metabolites with enzymatic antioxidant defense system augments redox-regulation property under salinity stress in rice. Physiology and Molecular Biology of Plants, 26(8), 1623-1633. doi:10.1007/s12298-020-00844-9 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Bano, A., Gupta, A., Rai, S., Fatima, T., Sharma, S., & Pathak, N. (2021). Mechanistic role of reactive oxygen species and its regulation via the antioxidant system under environmental stress. In: M. Hasanuzzaman & K. Nahar (Eds.), Plant stress physiology - perspectives in agriculture (pp. 1-18). IntechOpen. doi:10.5772/intechopen.101045 Crossref ● Google Scholar | ||||
| ||||
Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. doi:10.1007/bf00018060 Crossref ● Google Scholar | ||||
| ||||
Begum, N., Hasanuzzaman, M., Li, Y., Akhtar, K., Zhang, C., & Zhao, T. (2022). Seed germination behavior, growth, physiology and antioxidant metabolism of four contrasting cultivars under combined drought and salinity in soybean. Antioxidants, 11(3), 498. doi:10.3390/antiox11030498 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Chung, Y. S., Kim, K. S., Hamayun, M., & Kim, Y. (2020). Silicon confers soybean resistance to salinity stress through regulation of reactive oxygen and reactive nitrogen species. Frontiers in Plant Science, 10, 1725. doi:10.3389/fpls.2019.01725 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Cordea, M. I., & Borsai, O. (2021). Salt and water stress responses in plants. In: M. Hasanuzzaman & K. Nahar (Eds.), Plant stress physiology-perspectives in agriculture (pp. 1-22). IntechOpen. doi:10.5772/intechopen.101072 Crossref ● Google Scholar | ||||
| ||||
Dhindsa, R. S., Plumb-Dhindsa, P., & Thorpe, T. A. (1981). Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, 32(1), 93-101. doi:10.1093/jxb/32.1.93 Crossref ● Google Scholar | ||||
| ||||
El-Bassiouny, H. M. S., & Sadak, M. Sh. (2015). Impact of foliar application of ascorbic acid and α-tocopherol on antioxidant activity and some biochemical aspects of flax cultivars under salinity stress. Acta Biológica Colombiana, 20(2), 209-222. doi:10.15446/abc.v20n2.43868 Crossref ● Google Scholar | ||||
| ||||
El-Beltagi, H. S., Mohamed, H. I., & Sofy, M. R. (2020). Role of ascorbic acid, glutathione and proline applied as singly or in sequence combination in improving chickpea plant through physiological change and antioxidant defense under different levels of irrigation intervals. Molecules, 25(7), 1702. doi:10.3390/molecu-les25071702 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Gomez, K. A., & Gomez, A. A. (1984). Statistical procedures for agricultural research. 2nd edn. John NewYork: Wiley and Sons. Google Scholar | ||||
| ||||
Hakizimana, F., Haley, S. D., & Turnipseed, E. B. (2000). Repeatability and genotype× environment interaction of coleoptile length measurements in winter wheat. Crop Science, 40(5), 1233-1237. doi:10.2135/cropsci2000.4051233x Crossref ● Google Scholar | ||||
| ||||
Hasanuzzaman, M., Parvin, K., Anee, T. I., Masud, A. A. C., & Nowroz, F. (2022). Salt stress responses and tolerance in soybean. In: M. Hasanuzzaman & K. Nahar (Eds.), Plant stress physiology-perspectives in agriculture (pp. 47-82). IntechOpen. doi:10.5772/intechopen.102835 Crossref ● Google Scholar | ||||
| ||||
Hasanuzzaman, M., Raihan, Md. R. H., Masud, A. A. C., Rahman, K., Nowroz, F., Rahman, M., Nahar, K., & Fujita, M. (2021). Regulation of reactive oxygen species and antioxidant defense in plants under salinity. International Journal of Molecular Sciences, 22(17), 9326. doi:10.3390/ijms22179326 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Imran, Q. M., Falak, N., Hussain, A., Mun, B.-G., & Yun, B.-W. (2021). Abiotic stress in plants; stress perception to molecular response and role of biotechnological tools in stress resistance. Agronomy, 11(8), 1579. doi:10.3390/agronomy11081579 Crossref ● Google Scholar | ||||
| ||||
ISTA. (2014). International rules for seed testing. International Seed Testing Association, Bassersdorf. Google Scholar | ||||
| ||||
Isayenkov, S. V., & Maathuis, F. J. (2019). Plant salinity stress: many unanswered questions remain. Frontiers in Plant Science, 10, 80. doi:10.3389/fpls.2019.00080 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Khamees AL-Kareemawi, I. H., & Muhmood AL-Kazzaz, A. G. (2019). α-Tocopherol foliar application can alleviate the adverse effect of salinity stress on wheat plant, Triticum aestivum L. Biochemical & Cellular Archives, 19(2), 3495. Google Scholar | ||||
| ||||
Kolesnikov, M., Gerasko, T., Paschenko, Y., Pokoptseva, L., Onyschenko, O., & Kolesnikova, A. (2023). Effect of water deficit on maize seeds (Zea mays L.) during germination. Аgronomy Research, 21(1), 156-174. Google Scholar | ||||
| ||||
Kolesnikov, M. O. (2014). The influence of tocopherol on adaptive state and biological productivity formation of pea (Pisum sativum L.). The Journal of V. N. Karazin Kharkiv National University. Series biology, 1129(23), 129-137. (In Ukrainian) Google Scholar | ||||
| ||||
Kolesnikov, M., Paschenko, Y., Ninova, H., Kapinos, M., & Kolesnikova, A. (2019). Effect of preparations methyure (6-methyl-2-mercapto-4-hydroxypyrimidine) on corn (Zea Mays L.) biological productivity under saline soil conditions. In: V. Nadykto (Ed.), Modern development paths of agricultural production (pp. 719-728). Springer, Cham. doi:10.1007/978-3-030-14918-5_70 Crossref ● Google Scholar | ||||
| ||||
Kolupaev, Yu. E., Маkaova, B. E., Yastreb, T. O., Ryabchun, N. I., Tyshchenko, V. M., Barabolia, O. V. & Shkliarevskyi, M. A. (2023). Growth responses of wheat seedlings of different varieties to heat-stress and their relation to the antioxidant system state and osmolytes accumulation. Studia Biologica, 17(1), 81-97. doi:10.30970/sbi.1701.707 Crossref ● Google Scholar | ||||
| ||||
Kumar, A. (2017). Germination behaviour of soybean varieties under different salinity stress. International Journal of Applied Agricultural Research, 12(3), 69-76. Google Scholar | ||||
| ||||
Lalarukh, I., & Shahbaz, M. (2020). Response of antioxidants and lipid peroxidation to exogenous application of alpha-tocopherol in sunflower (Helianthus annuus L.) under salt stress. Pakistan Journal of Botany, 52(1), 75-83. doi:10.30848/pjb2020-1(41) Crossref ● Google Scholar | ||||
| ||||
Levine, R. L., Wehr, N., Williams, J. A., Stadtman, E. R., & Shacter, E. (2000). Determination of carbonyl groups in oxidized proteins. In: J. M. Walker & S. M. Keyse (Eds.), Stress response: methods and protocols (Vol. 99, pp. 15-24). Humana Press. doi:10.1385/1-59259-054-3:15 Crossref ● Google Scholar | ||||
| ||||
Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265-275. doi:10.1016/S0021-9258(19)52451-6 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Massange-Sánchez, J. A., Sánchez-Hernández, C. V., Hernández-Herrera, R. M., & Palmeros-Suárez, P. A. (2021). The biochemical mechanisms of salt tolerance in plants. In: M. Hasanuzzaman & K. Nahar (Eds.), Plant stress physiology-perspectives in agriculture (pp. 1-24). IntechOpen. doi:10.5772/intechopen.101048 Crossref ● Google Scholar | ||||
| ||||
Meena, M., Divyanshu, K., Kumar, S., Swapnil, P., Zehra, A., Shukla, V., Yadav, M., & Upadhyay, R. S. (2019). Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions. Heliyon, 5(12), e02952. doi:10.1016/j.heliyon.2019.e02952 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Mehmood, S., Ahmed, W., Ikram, M., Imtiaz, M., Mahmood, S., Tu, S., & Chen, D. (2020). Chitosan modified biochar increases soybean (Glycine max L.) resistance to salt-stress by augmenting root morphology, antioxidant defense mechanisms and the expression of stress-responsive genes. Plants, 9(9), 1173. doi:10.3390/plants9091173 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Mohanavelu, A., Naganna, S. R., & Al-Ansari, N. (2021). Irrigation induced salinity and sodicity hazards on soil and groundwater: an overview of its causes, impacts and mitigation strategies. Agriculture, 11(10), 983. doi:10.3390/agriculture11100983 Crossref ● Google Scholar | ||||
| ||||
Mushtaq, Z., Faizan, S., & Gulzar, B. (2020). Salt stress, its impacts on plants and the strategies plants are employing against it: a review. Journal of Applied Biology & Biotechnology, 8(3), 81-91. doi:10.7324/jabb.2020.80315 Crossref ● Google Scholar | ||||
| ||||
Mykhalkiv, L., Kots, S., & Obeziuk, I. (2023). Influence of salinity of legume plants and their use for restoration of soil fertility. Studia Biologica, 17(3), 211-224. doi:10.30970/sbi.1703.733 Crossref ● Google Scholar | ||||
| ||||
Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenger by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiol, 22(5), 867-880. Google Scholar | ||||
| ||||
Nguyen, T. T. Q., Trinh, L. T. H., Pham, H. B. V., Le, T. V., Phung, T. K. H., Lee, S. H., & Cheong, J. J. (2020). Evaluation of proline, soluble sugar and ABA content in soybean Glycine max (L.) under drought stress memory. AIMS Bioengineering, 7(3). doi:10.3934/bioeng.2020011 Crossref ● Google Scholar | ||||
| ||||
Orabi, S. A., & Abdelhamid, M. T. (2016). Protective role of α-tocopherol on two Vicia faba cultivars against seawater-induced lipid peroxidation by enhancing capacity of anti-oxidative system. Journal of the Saudi Society of Agricultural Sciences, 15(2), 145-154. doi:10.1016/j.jssas.2014.09.001 Crossref ● Google Scholar | ||||
| ||||
Orabi, S. A., & Abou-Hussein, S. D. (2019). Antioxidant defense mechanisms enhance oxidative stress tolerance in plants. A review. Current Science International, 8(3), 565-576. Google Scholar | ||||
| ||||
Parveen, P., Muhammad Anwar-ul-Haq, M. A. U. H., Javaid Akhtar, J. A., & Basra, S. M. A. (2016). Interactive effect of salinity and potassium on growth, biochemical parameters, protein and oil quality of soybean genotypes. Pakistan Journal of Agricultural Sciences, 53(1), 69-78. doi:10.21162/pakjas/16.4755 Crossref ● Google Scholar | ||||
| ||||
Pyda, S. V., Broschak, I. S., Moskalyuk, N. V., & Matsyuk, O. B. (2021). The influence of different sodium chloride concentrations on the water exchange indicators of cheepa leaves (Cicer arietinum L.). In: European scientific discussions. Proceedings of the 10th International scientific and practical conference (pp. 15-21). Potere della ragione Editore. Rome, Italy. Retrieved from http://dspace.tnpu.edu.ua/bitstream/123456789/24005/1/Puda_et_al_European.pdf | ||||
| ||||
Roychoudhury, A., Singh, A., Aftab, T., Ghosal, P., & Banik, N. (2021). Seedling priming with sodium nitroprusside rescues Vigna radiata from salinity stress-induced oxidative damages. Journal of Plant Growth Regulation, 40(6), 2454-2464. doi:10.1007/s00344-021-10328-z Crossref ● Google Scholar | ||||
| ||||
Sabagh, A. E., Hossain, A., Islam, M. S., Barutçular, C., Ratnasekera, D., Kumar, N., Meena, R. S., Gharib, H. S., Saneoka, H., & da Silva, J. A. T. (2019). Sustainable soybean production and abiotic stress management in saline environments: a critical review. Australian Journal of Crop Science, 13(02), 228-236. doi:10.21475/ajcs.19.13.02.p1285 Crossref ● Google Scholar | ||||
| ||||
Sadak, M. Sh., Abd El-Hameid, A. R., Zaki, F. S. A., Dawood, M. G., & El-Awadi, M. E. (2019). Physiological and biochemical responses of soybean (Glycine max L.) to cysteine application under sea salt stress. Bulletin of the National Research Centre, 44(1). doi:10.1186/s42269-019-0259-7 Crossref ● Google Scholar | ||||
| ||||
Sadiq, M., Akram, N. A., Ashraf, M., Al-Qurainy, F., & Ahmad, P. (2019). Alpha-tocopherol-induced regulation of growth and metabolism in plants under non-stress and stress conditions. Journal of Plant Growth Regulation, 38(4), 1325-1340. doi:10.1007/s00344-019-09936-7 Crossref ● Google Scholar | ||||
| ||||
Semida, W. M., Taha, R. S., Abdelhamid, M. T., & Rady, M. M. (2014). Foliar-applied α-tocopherol enhances salt-tolerance in Vicia faba L. plants grown under saline conditions. South African Journal of Botany, 95, 24-31. doi:10.1016/j.sajb.2014.08.005 Crossref ● Google Scholar | ||||
| ||||
Shahid, S., Shahbaz, M., Maqsood, M. F., Farhat, F., Zulfiqar, U., Javed, T., Fraz Ali, M., Alhomrani, M., & Alamri, A. S. (2022). Proline-induced modifications in morpho-physiological, biochemical and yield attributes of pea (Pisum sativum L.) cultivars under salt stress. Sustainability, 14(20), 13579. doi:10.3390/su142013579 Crossref ● Google Scholar | ||||
| ||||
Shelke, D. B., Nikalje, G. C., Chambhare, M. R., Zaware, B. N., Penna, S., & Nikam, T. D. (2019). Na+ and Cl− induce differential physiological, biochemical responses and metabolite modulations in vitro in contrasting salt-tolerant soybean genotypes. 3 Biotech, 9(3), 91. doi:10.1007/s13205-019-1599-6 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Sheteiwy, M. S., Shao, H., Qi, W., Daly, P., Sharma, A., Shaghaleh, H., Hamoud, Y. A., El-Esawi, M. A., Pan, R., Wan, Q., & Lu, H. (2021). Seed priming and foliar application with jasmonic acid enhance salinity stress tolerance of soybean (Glycine max L.) seedlings. Journal of the Science of Food and Agriculture, 101(5), 2027-2041. doi:10.1002/jsfa.10822 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Silva, B. R. S., Batista, B. L., & Lobato, A. K. S. (2021). Anatomical changes in stem and root of soybean plants submitted to salt stress. Plant Biology, 23(1), 57-65. doi:10.1111/plb.13176 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Sofy, M. R., Elhindi, K. M., Farouk, S., & Alotaibi, M. A. (2020). Zinc and paclobutrazol mediated regulation of growth, upregulating antioxidant aptitude and plant productivity of pea plants under salinity. Plants, 9(9), 1197. doi:10.3390/plants9091197 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Souana, K., Taïbi, K., Abderrahim, L. A., Amirat, M., Achir, M., Boussaid, M., & Mulet, J. M. (2020). Salt-tolerance in Vicia faba L. is mitigated by the capacity of salicylic acid to improve photosynthesis and antioxidant response. Scientia Horticulturae, 273, 109641. doi:10.1016/j.scienta.2020.109641 Crossref ● Google Scholar | ||||
| ||||
Taie, H. A., & Rady, M. M. (2024). α-Tocopherol mediates alleviation of salt stress effects in Glycine max through up-regulation of the antioxidant defense system and secondary metabolites. Acta Physiologiae Plantarum, 46(4), 39. doi:10.1007/s11738-024-03654-8 Crossref ● Google Scholar | ||||
| ||||
Tryhuba, O. V., Pyda, S. V., Broschak, I. S., & Matsiuk, O. B. (2019). Efficiency of application of plant growth regulators in the cultures of white lupine (Lupinus albus L.). Scientific Issue Ternopil Volodymyr Hnatiuk National Pedagogical University. Series: Biology, 78(4), 59-68. doi:10.25128/2078-2357.19.4.9 (In Ukrainian) Crossref ● Google Scholar |
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Maksym Kolesnikov, Yuliia Paschenko
This work is licensed under a Creative Commons Attribution 4.0 International License.