PHYSIOLOGICAL AND BIOCHEMICAL RESPONSES OF SOYBEAN SEEDLINGS (GLYCINE MAX L.) TO α-TOCOPHEROL TREATMENT UNDER SALT STRESS

Maksym Kolesnikov, Yuliia Paschenko


DOI: http://dx.doi.org/10.30970/sbi.1804.794

Abstract


Background. Salinity is one of the most important factors affecting the growth and productivity of plants. It creates stressful conditions for legumes at the initial phases of ontogenesis. The prospects of exogenous α-tocopherol usage to increase the salt resistance of Glycine max L. were studied. The aim of the work was to study the influence of salt stress and α-tocopherol on the growth of soybean and indicators characteri­zing the antioxidant system functioning.
Materials and methods. Soybean seedlings of the Oksana variety were the objects of our study. Seeds of the control group were soaked in distilled water, seeds of the experimental groups – in α-Toc acetic solutions in concentrations (0.01; 0.1; 0.5; 1.0 g/L). A 100 mM sodium chloride solution was used to create salinity. The samples of cotyledons, hypocotyls and primary roots of 10-day-old soybean were used for determination of biochemical parameters. Germination of seeds, raw weight, length of soybean hypocotyls and roots, content of TBA-reactive substances, carbonyl groups of oxidatively modified proteins, proline, catalase and ascorbate peroxidase activity were determined.
Results. It was established that salinity caused inhibition of soybean seed germination and growth. Pretreatment of soybean seeds with α-Toc (0.1 and 0.5 g/L) effectively increased germination and improved growth indicators of soybean. An increase in TBA-reactive substances and oxidatively modified proteins in hypocotyls and roots of salt-stressed plants was recorded. α-Toc reduced the level of peroxidation and oxidatively modified proteins of soybean seedlings under salinity. Proline synthesis increased during the development of the salt stress reaction, and its accumulation is an adaptive response of soybean plants. The pretreatment of α-Toc caused a significant increase of proline and stimulated catalase and ascorbate peroxidase activity in soybean seedling tissues under salt stress. However, a high concentration of α-Toc (1.0 g/L) slowed down the activity of antioxidant enzymes.
Conclusions. Our study suggests the participation of α-Toc in the formation of legumes salt resistance. The α-Toc pretreatment of soybean seeds improved germination and enhanced growth processes, normalized the oxidative state of the salt-stressed soybean seedlings by inhibiting peroxidation and reducing the degree of oxidatively modified proteins, stimulating the activity of antioxidant enzymes, and increasing the content of proline.


Keywords


salinity, Glycine max L., growth, TBA-reactive substances, protein’s oxidative modification, proline, antioxidant enzymes

Full Text:

PDF

References


Açıkbaş, S., Özyazıcı, M. A., Bıçakçı, E., & Özyazıcı, G. (2023). Germination and seedling development performances of some soybean (Glycine max (L.) Merrill) cultivars under salinity stress. Turkish Journal of Range and Forage Science, 4(2), 108-118. doi:10.51801/turkjrfs.1387963
CrossrefGoogle Scholar

Aebi, H. (1984). Catalase in vitro. In: L. Packer (Ed.), Methods in enzymology (Vol. 105, pp. 121-126). Academic press. doi:10.1016/s0076-6879(84)05016-3
CrossrefPubMedGoogle Scholar

Ahmad, R., Hussain, S., Anjum, M. A., Khalid, M. F., Saqib, M., Zakir, I., Hassan, A., Fahad, S., & Ahmad, S. (2019). Oxidative stress and antioxidant defense mechanisms in plants under salt stress. Plant Abiotic Stress Tolerance: Agronomic, Molecular and Biotechnological Approaches, 191-205. doi:10.1007/978-3-030-06118-0_8
CrossrefGoogle Scholar

Akyol, T. Y., Yilmaz, O., Uzilday, B., Uzilday, R. Ö. & Türkan, İ. (2020). Plant response to salinity: an analysis of ROS formation, signaling, and antioxidant defense. Turkish Journal of Botany, 44, 1-13. doi:10.3906/bot-1911-15
CrossrefGoogle Scholar

Ali, E., Hussain, S., Hussain, N., Kakar, K. U., Shah, J. M., Zaidi, S. H. R., Jan, M., Zhang, K., Khan, M. A., & Imtiaz, M. (2022). Tocopherol as plant protector: an overview of Tocopherol biosynthesis enzymes and their role as antioxidant and signaling molecules. Acta Physiologiae Plantarum, 44(2), 20. doi:10.1007/s11738-021-03350-x
CrossrefGoogle Scholar

Alnusairi, G. S. (2022). Improved salt tolerance by α-tocopherol in soybean involves up-regulation of ascorbate-glutathione cycle and secondary metabolites. Journal of Applied Botany & Food Quality, 95, 31-42.
Google Scholar

Al-Omar, M. S., Naz, M., Mohammed, S. A. A., Mansha, M., Ansari, M. N., Rehman, N. U., Kamal, M., Mohammed, H. A., Yusuf, M., Hamad, A. M., Akhtar, N., & Khan, R. A. (2020). Pyrethroid-induced organ toxicity and anti-oxidant-supplemented amelioration of toxicity and organ damage: the protective roles of ascorbic acid and α-tocopherol. International Journal of Environmental Research and Public Health, 17(17), 6177. doi:10.3390/ijerph17176177
CrossrefPubMedPMCGoogle Scholar

Badr, E. A. E., Sadak, M. S., Bakhoum, G. S., & Khedr, H. H. A. (2021). Physiological response of sweet corn (Zea mays Ls.) grown under sandy soil to α-tocopherol treatments and different irrigation systems. Bulletin of the National Research Centre, 45(1), 1-10. doi:10.1186/s42269-020-00465-y
CrossrefGoogle Scholar

Balasubramaniam, T., Shen, G., Esmaeili, N., & Zhang, H. (2023). Plants' response mechanisms to salinity stress. Plants, 12(12), 2253. doi:10.3390/plants12122253
CrossrefPubMedPMCGoogle Scholar

Banik, N., & Bhattacharjee, S. (2020). Complementation of ROS scavenging secondary metabolites with enzymatic antioxidant defense system augments redox-regulation property under salinity stress in rice. Physiology and Molecular Biology of Plants, 26(8), 1623-1633. doi:10.1007/s12298-020-00844-9
CrossrefPubMedPMCGoogle Scholar

Bano, A., Gupta, A., Rai, S., Fatima, T., Sharma, S., & Pathak, N. (2021). Mechanistic role of reactive oxygen species and its regulation via the antioxidant system under environmental stress. In: M. Hasanuzzaman & K. Nahar (Eds.), Plant stress physiology - perspectives in agriculture (pp. 1-18). IntechOpen. doi:10.5772/intechopen.101045
CrossrefGoogle Scholar

Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. doi:10.1007/bf00018060
CrossrefGoogle Scholar

Begum, N., Hasanuzzaman, M., Li, Y., Akhtar, K., Zhang, C., & Zhao, T. (2022). Seed germination behavior, growth, physiology and antioxidant metabolism of four contrasting cultivars under combined drought and salinity in soybean. Antioxidants, 11(3), 498. doi:10.3390/antiox11030498
CrossrefPubMedPMCGoogle Scholar

Chung, Y. S., Kim, K. S., Hamayun, M., & Kim, Y. (2020). Silicon confers soybean resistance to salinity stress through regulation of reactive oxygen and reactive nitrogen species. Frontiers in Plant Science, 10, 1725. doi:10.3389/fpls.2019.01725
CrossrefPubMedPMCGoogle Scholar

Cordea, M. I., & Borsai, O. (2021). Salt and water stress responses in plants. In: M. Hasanuzzaman & K. Nahar (Eds.), Plant stress physiology-perspectives in agriculture (pp. 1-22). IntechOpen. doi:10.5772/intechopen.101072
CrossrefGoogle Scholar

Dhindsa, R. S., Plumb-Dhindsa, P., & Thorpe, T. A. (1981). Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, 32(1), 93-101. doi:10.1093/jxb/32.1.93
CrossrefGoogle Scholar

El-Bassiouny, H. M. S., & Sadak, M. Sh. (2015). Impact of foliar application of ascorbic acid and α-tocopherol on antioxidant activity and some biochemical aspects of flax cultivars under salinity stress. Acta Biológica Colombiana, 20(2), 209-222. doi:10.15446/abc.v20n2.43868
CrossrefGoogle Scholar

El-Beltagi, H. S., Mohamed, H. I., & Sofy, M. R. (2020). Role of ascorbic acid, glutathione and proline applied as singly or in sequence combination in improving chickpea plant through physiological change and antioxidant defense under different levels of irrigation intervals. Molecules, 25(7), 1702. doi:10.3390/molecu-les25071702
CrossrefPubMedPMCGoogle Scholar

Gomez, K. A., & Gomez, A. A. (1984). Statistical procedures for agricultural research. 2nd edn. John NewYork: Wiley and Sons.
Google Scholar

Hakizimana, F., Haley, S. D., & Turnipseed, E. B. (2000). Repeatability and genotype× environment interaction of coleoptile length measurements in winter wheat. Crop Science, 40(5), 1233-1237. doi:10.2135/cropsci2000.4051233x
CrossrefGoogle Scholar

Hasanuzzaman, M., Parvin, K., Anee, T. I., Masud, A. A. C., & Nowroz, F. (2022). Salt stress responses and tolerance in soybean. In: M. Hasanuzzaman & K. Nahar (Eds.), Plant stress physiology-perspectives in agriculture (pp. 47-82). IntechOpen. doi:10.5772/intechopen.102835
CrossrefGoogle Scholar

Hasanuzzaman, M., Raihan, Md. R. H., Masud, A. A. C., Rahman, K., Nowroz, F., Rahman, M., Nahar, K., & Fujita, M. (2021). Regulation of reactive oxygen species and antioxidant defense in plants under salinity. International Journal of Molecular Sciences, 22(17), 9326. doi:10.3390/ijms22179326
CrossrefPubMedPMCGoogle Scholar

Imran, Q. M., Falak, N., Hussain, A., Mun, B.-G., & Yun, B.-W. (2021). Abiotic stress in plants; stress perception to molecular response and role of biotechnological tools in stress resistance. Agronomy, 11(8), 1579. doi:10.3390/agronomy11081579
CrossrefGoogle Scholar

ISTA. (2014). International rules for seed testing. International Seed Testing Association, Bassersdorf.
Google Scholar

Isayenkov, S. V., & Maathuis, F. J. (2019). Plant salinity stress: many unanswered questions remain. Frontiers in Plant Science, 10, 80. doi:10.3389/fpls.2019.00080
CrossrefPubMedPMCGoogle Scholar

Khamees AL-Kareemawi, I. H., & Muhmood AL-Kazzaz, A. G. (2019). α-Tocopherol foliar application can alleviate the adverse effect of salinity stress on wheat plant, Triticum aestivum L. Biochemical & Cellular Archives, 19(2), 3495.
Google Scholar

Kolesnikov, M., Gerasko, T., Paschenko, Y., Pokoptseva, L., Onyschenko, O., & Kolesnikova, A. (2023). Effect of water deficit on maize seeds (Zea mays L.) during germination. Аgronomy Research, 21(1), 156-174.
Google Scholar

Kolesnikov, M. O. (2014). The influence of tocopherol on adaptive state and biological productivity formation of pea (Pisum sativum L.). The Journal of V. N. Karazin Kharkiv National University. Series biology, 1129(23), 129-137. (In Ukrainian)
Google Scholar

Kolesnikov, M., Paschenko, Y., Ninova, H., Kapinos, M., & Kolesnikova, A. (2019). Effect of preparations methyure (6-methyl-2-mercapto-4-hydroxypyrimidine) on corn (Zea Mays L.) biological productivity under saline soil conditions. In: V. Nadykto (Ed.), Modern development paths of agricultural production (pp. 719-728). Springer, Cham. doi:10.1007/978-3-030-14918-5_70
CrossrefGoogle Scholar

Kolupaev, Yu. E., Маkaova, B. E., Yastreb, T. O., Ryabchun, N. I., Tyshchenko, V. M., Barabolia, O. V. & Shkliarevskyi, M. A. (2023). Growth responses of wheat seedlings of different varieties to heat-stress and their relation to the antioxidant system state and osmolytes accumulation. Studia Biologica, 17(1), 81-97. doi:10.30970/sbi.1701.707
CrossrefGoogle Scholar

Kumar, A. (2017). Germination behaviour of soybean varieties under different salinity stress. International Journal of Applied Agricultural Research, 12(3), 69-76.
Google Scholar

Lalarukh, I., & Shahbaz, M. (2020). Response of antioxidants and lipid peroxidation to exogenous application of alpha-tocopherol in sunflower (Helianthus annuus L.) under salt stress. Pakistan Journal of Botany, 52(1), 75-83. doi:10.30848/pjb2020-1(41)
CrossrefGoogle Scholar

Levine, R. L., Wehr, N., Williams, J. A., Stadtman, E. R., & Shacter, E. (2000). Determination of carbonyl groups in oxidized proteins. In: J. M. Walker & S. M. Keyse (Eds.), Stress response: methods and protocols (Vol. 99, pp. 15-24). Humana Press. doi:10.1385/1-59259-054-3:15
CrossrefGoogle Scholar

Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265-275. doi:10.1016/S0021-9258(19)52451-6
CrossrefPubMedGoogle Scholar

Massange-Sánchez, J. A., Sánchez-Hernández, C. V., Hernández-Herrera, R. M., & Palmeros-Suárez, P. A. (2021). The biochemical mechanisms of salt tolerance in plants. In: M. Hasanuzzaman & K. Nahar (Eds.), Plant stress physiology-perspectives in agriculture (pp. 1-24). IntechOpen. doi:10.5772/intechopen.101048
CrossrefGoogle Scholar

Meena, M., Divyanshu, K., Kumar, S., Swapnil, P., Zehra, A., Shukla, V., Yadav, M., & Upadhyay, R. S. (2019). Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions. Heliyon, 5(12), e02952. doi:10.1016/j.heliyon.2019.e02952
CrossrefPubMedPMCGoogle Scholar

Mehmood, S., Ahmed, W., Ikram, M., Imtiaz, M., Mahmood, S., Tu, S., & Chen, D. (2020). Chitosan modified biochar increases soybean (Glycine max L.) resistance to salt-stress by augmenting root morphology, antioxidant defense mechanisms and the expression of stress-responsive genes. Plants, 9(9), 1173. doi:10.3390/plants9091173
CrossrefPubMedPMCGoogle Scholar

Mohanavelu, A., Naganna, S. R., & Al-Ansari, N. (2021). Irrigation induced salinity and sodicity hazards on soil and groundwater: an overview of its causes, impacts and mitigation strategies. Agriculture, 11(10), 983. doi:10.3390/agriculture11100983
CrossrefGoogle Scholar

Mushtaq, Z., Faizan, S., & Gulzar, B. (2020). Salt stress, its impacts on plants and the strategies plants are employing against it: a review. Journal of Applied Biology & Biotechnology, 8(3), 81-91. doi:10.7324/jabb.2020.80315
CrossrefGoogle Scholar

Mykhalkiv, L., Kots, S., & Obeziuk, I. (2023). Influence of salinity of legume plants and their use for restoration of soil fertility. Studia Biologica, 17(3), 211-224. doi:10.30970/sbi.1703.733
CrossrefGoogle Scholar

Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenger by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiol, 22(5), 867-880.
Google Scholar

Nguyen, T. T. Q., Trinh, L. T. H., Pham, H. B. V., Le, T. V., Phung, T. K. H., Lee, S. H., & Cheong, J. J. (2020). Evaluation of proline, soluble sugar and ABA content in soybean Glycine max (L.) under drought stress memory. AIMS Bioengineering, 7(3). doi:10.3934/bioeng.2020011
CrossrefGoogle Scholar

Orabi, S. A., & Abdelhamid, M. T. (2016). Protective role of α-tocopherol on two Vicia faba cultivars against seawater-induced lipid peroxidation by enhancing capacity of anti-oxidative system. Journal of the Saudi Society of Agricultural Sciences, 15(2), 145-154. doi:10.1016/j.jssas.2014.09.001
CrossrefGoogle Scholar

Orabi, S. A., & Abou-Hussein, S. D. (2019). Antioxidant defense mechanisms enhance oxidative stress tolerance in plants. A review. Current Science International, 8(3), 565-576.
Google Scholar

Parveen, P., Muhammad Anwar-ul-Haq, M. A. U. H., Javaid Akhtar, J. A., & Basra, S. M. A. (2016). Interactive effect of salinity and potassium on growth, biochemical parameters, protein and oil quality of soybean genotypes. Pakistan Journal of Agricultural Sciences, 53(1), 69-78. doi:10.21162/pakjas/16.4755
CrossrefGoogle Scholar

Pyda, S. V., Broschak, I. S., Moskalyuk, N. V., & Matsyuk, O. B. (2021). The influence of different sodium chloride concentrations on the water exchange indicators of cheepa leaves (Cicer arietinum L.). In: European scientific discussions. Proceedings of the 10th International scientific and practical conference (pp. 15-21). Potere della ragione Editore. Rome, Italy. Retrieved from http://dspace.tnpu.edu.ua/bitstream/123456789/24005/1/Puda_et_al_European.pdf

Roychoudhury, A., Singh, A., Aftab, T., Ghosal, P., & Banik, N. (2021). Seedling priming with sodium nitroprusside rescues Vigna radiata from salinity stress-induced oxidative damages. Journal of Plant Growth Regulation, 40(6), 2454-2464. doi:10.1007/s00344-021-10328-z
CrossrefGoogle Scholar

Sabagh, A. E., Hossain, A., Islam, M. S., Barutçular, C., Ratnasekera, D., Kumar, N., Meena, R. S., Gharib, H. S., Saneoka, H., & da Silva, J. A. T. (2019). Sustainable soybean production and abiotic stress management in saline environments: a critical review. Australian Journal of Crop Science, 13(02), 228-236. doi:10.21475/ajcs.19.13.02.p1285
CrossrefGoogle Scholar

Sadak, M. Sh., Abd El-Hameid, A. R., Zaki, F. S. A., Dawood, M. G., & El-Awadi, M. E. (2019). Physiological and biochemical responses of soybean (Glycine max L.) to cysteine application under sea salt stress. Bulletin of the National Research Centre, 44(1). doi:10.1186/s42269-019-0259-7
CrossrefGoogle Scholar

Sadiq, M., Akram, N. A., Ashraf, M., Al-Qurainy, F., & Ahmad, P. (2019). Alpha-tocopherol-induced regulation of growth and metabolism in plants under non-stress and stress conditions. Journal of Plant Growth Regulation, 38(4), 1325-1340. doi:10.1007/s00344-019-09936-7
CrossrefGoogle Scholar

Semida, W. M., Taha, R. S., Abdelhamid, M. T., & Rady, M. M. (2014). Foliar-applied α-tocopherol enhances salt-tolerance in Vicia faba L. plants grown under saline conditions. South African Journal of Botany, 95, 24-31. doi:10.1016/j.sajb.2014.08.005
CrossrefGoogle Scholar

Shahid, S., Shahbaz, M., Maqsood, M. F., Farhat, F., Zulfiqar, U., Javed, T., Fraz Ali, M., Alhomrani, M., & Alamri, A. S. (2022). Proline-induced modifications in morpho-physiological, biochemical and yield attributes of pea (Pisum sativum L.) cultivars under salt stress. Sustainability, 14(20), 13579. doi:10.3390/su142013579
CrossrefGoogle Scholar

Shelke, D. B., Nikalje, G. C., Chambhare, M. R., Zaware, B. N., Penna, S., & Nikam, T. D. (2019). Na+ and Cl induce differential physiological, biochemical responses and metabolite modulations in vitro in contrasting salt-tolerant soybean genotypes. 3 Biotech, 9(3), 91. doi:10.1007/s13205-019-1599-6
CrossrefPubMedPMCGoogle Scholar

Sheteiwy, M. S., Shao, H., Qi, W., Daly, P., Sharma, A., Shaghaleh, H., Hamoud, Y. A., El-Esawi, M. A., Pan, R., Wan, Q., & Lu, H. (2021). Seed priming and foliar application with jasmonic acid enhance salinity stress tolerance of soybean (Glycine max L.) seedlings. Journal of the Science of Food and Agriculture, 101(5), 2027-2041. doi:10.1002/jsfa.10822
CrossrefPubMedGoogle Scholar

Silva, B. R. S., Batista, B. L., & Lobato, A. K. S. (2021). Anatomical changes in stem and root of soybean plants submitted to salt stress. Plant Biology, 23(1), 57-65. doi:10.1111/plb.13176
CrossrefPubMedGoogle Scholar

Sofy, M. R., Elhindi, K. M., Farouk, S., & Alotaibi, M. A. (2020). Zinc and paclobutrazol mediated regulation of growth, upregulating antioxidant aptitude and plant productivity of pea plants under salinity. Plants, 9(9), 1197. doi:10.3390/plants9091197
CrossrefPubMedPMCGoogle Scholar

Souana, K., Taïbi, K., Abderrahim, L. A., Amirat, M., Achir, M., Boussaid, M., & Mulet, J. M. (2020). Salt-tolerance in Vicia faba L. is mitigated by the capacity of salicylic acid to improve photosynthesis and antioxidant response. Scientia Horticulturae, 273, 109641. doi:10.1016/j.scienta.2020.109641
CrossrefGoogle Scholar

Taie, H. A., & Rady, M. M. (2024). α-Tocopherol mediates alleviation of salt stress effects in Glycine max through up-regulation of the antioxidant defense system and secondary metabolites. Acta Physiologiae Plantarum, 46(4), 39. doi:10.1007/s11738-024-03654-8
CrossrefGoogle Scholar

Tryhuba, O. V., Pyda, S. V., Broschak, I. S., & Matsiuk, O. B. (2019). Efficiency of application of plant growth regulators in the cultures of white lupine (Lupinus albus L.). Scientific Issue Ternopil Volodymyr Hnatiuk National Pedagogical University. Series: Biology, 78(4), 59-68. doi:10.25128/2078-2357.19.4.9 (In Ukrainian)
CrossrefGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Maksym Kolesnikov, Yuliia Paschenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.