DISTURBАNCE OF THE EXPRESSION OF CIRCADIAN GENES Per1, Clock AND BMal1 IN RAT LIVER, LUNG,TESTIS, KIDNEY AND HEART UNDER SILVER NANOPARTICLES ACTION ON ORGANISM

D. O. Minchenko, I. V. Bozhko, T. O. Zinchenko, O. P. Yavorovsky, O. H. Minchenko


DOI: http://dx.doi.org/10.30970/sbi.0401.081

Abstract


Most of physiological and biochemical processes in living organisms have circa­dian character. Disturbance of the regulation of circadian processes leads to developing different pathological processes and cancer, in particular. In this work, we have studied the effect of silver nanoparticles on the expression of very important regulatory genes which control the circadian processes: Per1, Clock and BMal1. We have shown that the level of Per1 expression significantly increased in the liver and lung but decreased in the testes. The level of Clock mRNA expression also increased in liver and lung but decreased in kidney. The Clock mRNA expression in testis and heart was observed at late period of silver nanoparticles action. Thus, the expression of Per1, Clock and BMal1 mRNA significantly changed in tissue specific manner in rats treated with silver nanoparticles. Disturbance of these genes expression can destroy cellular signal pathways and leads to developing pathological processes. The results of our investigation clearly demonstrated that silver nanoparticles have significant effect on the regulatory mechanisms which control cell metabolism via circadian gene expression. Expression of circadian genes can be a sensitive test for the detection of silver nanoparticles action on the organisms.


Keywords


Per1, Clock, BMal1, silver nanoparticles, liver, lung, testes, rats

References


1. Gonze D., Goldbeter A. Circadian rhythms and molecular noise. Chaos, 2006; 16(2): 026110 (1-11).
https://doi.org/10.1063/1.2211767
PMid:16822042

2. Tsinkalovsky O., Smaaland R., Rosenlund B. et al. Circadian variations in clock gene expression of human bone marrow CD34+ cells. J. of Biological Rhythms, 2007; 22(2): 140-150.
https://doi.org/10.1177/0748730406299078
PMid:17440215

3. Teboul M., Barrat-Petit M.A., Li X.M. et al. Atypical patterns of circadian clock gene expression in human peripheral blood mononuclear cells. J. of Molecular Medicine, 2005; 83(9): 693-699.
https://doi.org/10.1007/s00109-005-0697-6
PMid:16096739

4. Kovac J., Husse J., Oster H. A time to fast, a time to feast: the crosstalk between metabolism and the circadian clock. Molecules and Cells, 2009; 28(2): 75-80.
https://doi.org/10.1007/s10059-009-0113-0
PMid:19714310

5. Turek F.W., Joshu C., Kohsaka A. et al. Obesity and metabolic syndrome in circadian Clock mutant mice. Science, 2005; 308(5724): 1043-1045.
https://doi.org/10.1126/science.1108750
PMid:15845877 PMCid:PMC3764501

6. Rudic R.D., McNamara P., Curtis A.M. et al. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biology, 2004; 2(11): E377.
https://doi.org/10.1371/journal.pbio.0020377
PMid:15523558 PMCid:PMC524471

7. Lee H., Chen R., Lee Y. et al. Essential roles of CKIdelta and CKIepsilon in the mammalian circadian clock. Proceeding National Academy of Sciences U.S.A., 2009; 106(50): 21359-21364.
https://doi.org/10.1073/pnas.0906651106
PMid:19948962 PMCid:PMC2795500

8. Zhu Y., Stevens R.G., Hoffman A.E. et al. Testing the circadian gene hypothesis in prostate cancer: a population-based case-control study. Cancer Research, 2009; 69(24): 9315-9322.
https://doi.org/10.1158/0008-5472.CAN-09-0648
PMid:19934327 PMCid:PMC2955869

9. Taniguchi H., Fernandez A.F., Setien F. et al. Epigenetic inactivation of the circadian clock gene BMAL1 in hematologic malignancies. Cancer Research, 2009; 69(21): 8447-8454.
https://doi.org/10.1158/0008-5472.CAN-09-0551
PMid:19861541

10. Sato T.K., Yamada R.G., Ukai H. et al. Feedback repression is required for mammalian circadian clock function. Nature Genetics, 2006; 38(3): 312-319.
https://doi.org/10.1038/ng1745
PMid:16474406 PMCid:PMC1994933

11. Chen R., Schirmer A., Lee Y. et al. Rhythmic PER abundance defines a critical nodal point for negative feedback within the circadian clock mechanism. Molecular Cell, 2009; 36(3): 417-430.
https://doi.org/10.1016/j.molcel.2009.10.012
PMid:19917250 PMCid:PMC3625733

12. Sato T.K., Yamada R.G., Ukai H. et al. Feedback repression is required for mammalian circadian clock function. Nature Genetics, 2006; 38(3): 312-319.
https://doi.org/10.1038/ng1745
PMid:16474406 PMCid:PMC1994933

13. Pfeffer M., Muller C.M., Mordel J. et al. The mammalian molecular clockwork controls rhythmic expression of its own input pathway components. J. of Neurosciences, 2009; 29(19): 6114-6123.
https://doi.org/10.1523/JNEUROSCI.0275-09.2009
PMid:19439589

14. Sasaki M., Yoshitane H., Du N.H. et al. Preferential inhibition of BMAL2-CLOCK activity by PER2 reemphasizes its negative role and a positive role of BMAL2 in the circadian transcription. The Journal of Biological Chemistry, 2009; 284(37): 25149- 25159.
https://doi.org/10.1074/jbc.M109.040758
PMid:19605937 PMCid:PMC2757218

15. Мінченко О.Г., Яворовський О.П., Паустовський Ю.О. та ін. Циркадіальні гени як чутливі маркери біонебезпеки. Здоров'я та довкілля, 2009; №1(48): 10-17.

16. Ji J.H., Jung J.H., Kim S.S. et al. Twenty-eight-day inhalation toxicity study of silver nanoparticles in Sprague-Dawley rats. Inhalation Toxicology, 2007; 19(10): 857-871.
https://doi.org/10.1080/08958370701432108
PMid:17687717

17. Griffitt R.J., Hyndman K., Denslow N.D., Barber D.S. Comparison of Molecular and Histological Changes in Zebrafish Gills Exposed to Metallic Nanoparticles. Toxicological Sciences, 2009; 107(2): 404-415.
https://doi.org/10.1093/toxsci/kfn256
PMid:19073994

18. Lubick N. Nanosilver toxicity: ions, nanoparticles or both? Environment Science Technology, 2008; 42(23): 8617.
https://doi.org/10.1021/es8026314
PMid:19192768

19. Minchenko O.H., Opentanova I.L., Minchenko D.O. et al. Hypoxia induces transcription of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 gene via hypoxia-inducible factor-1alpha activation. FEBS Letters, 2004; 576(1): 14-20.
https://doi.org/10.1016/j.febslet.2004.08.053
PMid:15474002

20. Мінченко Д.О., Яворовський О.П., Завгородній І.В. та ін. Експериментальні дані щодо порушення експресії циркадіальних генів у печінці та легенях як показник токсичної дії метил-третбутилового ефіру на організм. Укр. журнал з проблем медицини праці, 2008; № 3(15): 20-26.

21. Дибкова С.М., Романько М.Є., Грузіна Т.Г. та ін. Визначення ушкоджень ДНК наночастками металів, перспективних для біотехнології. Біотехнологія, 2009; 2(3): 80-85.

22. Hollien J., Lin J.H., Li H. et al. Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. Journal of Cellular Biology, 2009; 186(3): 323-231.
https://doi.org/10.1083/jcb.200903014
PMid:19651891 PMCid:PMC2728407

23. Aragon T., van Anken E., Pincus D. et al. Messenger RNA targeting to endoplasmic reticulum stress signalling sites. Nature, 2009; 457: 736-740.
https://doi.org/10.1038/nature07641
PMid:19079237 PMCid:PMC2768538

24. Korennykh A.V., Egea P.F., Korostelev A.A. et al. The unfolded protein response signals through high-order assembly of Ire1. Nature, 2009; 457: 687-693.
https://doi.org/10.1038/nature07661
PMid:19079236 PMCid:PMC2846394


Refbacks

  • There are currently no refbacks.


Copyright (c) 2010 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.