CARBON DOT DRESSING AS A TREATMENT OF ALKALI-INDUCED SKIN BURNS

Halyna Kuznietsova, Arsen Ishchuk, Roman Bogatyryov, Bohdana Bozhenko, Margaryta Kurylenko, Ivan Lysenko, Tetiana Lysenko, Taras Rybalchenko, Oleksandr Ogloblya, Yury Ryabchikov, Oleksandr Zaderko, Nataliia Dziubenko


DOI: http://dx.doi.org/10.30970/sbi.1801.758

Abstract


Background. Chemical burns, comprising 5–10 % of total burns but causing 30 % of burn-related deaths, are now a notable concern in Ukraine. Current clinical protocols lack specific approaches for chemical burns, and research on this type of burn is limited. Carbon-based nanoparticles show promise for wound healing because of anti-inflammatory, antioxidant, and antibacterial activities. So, the ability of carbon dots obtained from citric acid and urea (further called CD) to improve the healing of alkali-induced skin burn was aimed to be discovered.
Materials and Methods. The study was conducted on male Wistar rats. Burn was modeled by application of gauze disc soaked with 3 M NaOH solution on shaved skin of anesthetized rats for 10 min. A CD dressing, consisting of a CD solution (1 mg/mL) mixed with cellulose-based hydrogel that served as a vehicle, was applied to burned skin daily during a 7-day period. There were following groups: control (healthy rats), a burn-only group (rats that received no dressing), a burn + vehicle group (rats that received vehicle dressing), and a burn + CD group (rats that received CD dressing). The study involved monitoring of burn areas, conducting skin histopathology, and perfor­ming blood biochemical analyses.
Results. The daily CD dressing significantly decreased alkali-induced burn area (by 76 % compared to 40 % in burn-only group) after seven daily dressings. The level of inflammation in the burn site was also less expressed in CD-treated animals, compared to respective controls (non-treated animals and animals treated with Vehicle). There was no substantial systemic toxicity of the burn (of such area) and its healing, manifested by absence of body weight loss, and absence of dramatical changes in serum biochemical parameters (indicators of liver and kidney function). However, animals of all the groups that experienced burns had a significantly lower body weight gain and mesenteric lymph nodes weight compared to healthy rats.
Conclusions. So, the application of carbon dots mixed with hydrogel speeded up alkali-induced burn healing without negative impact on the organism.


Keywords


carbon dots, alkali-induced burn, skin inflammation

Full Text:

PDF

References


Alven, S., & Aderibigbe, B. A. (2020). Chitosan and cellulose-based hydrogels for wound management. International Journal of Molecular Sciences, 21(24), 9656. doi:10.3390/ijms21249656
CrossrefPubMedPMCGoogle Scholar

Andrews, K., Mowlavi, A., & Milner, S. M. (2003). The treatment of alkaline burns of the skin by neutralization. Plastic and Reconstructive Surgery, 111(6), 1918-1921. doi:10.1097/01.prs.0000058953.16695.a7
CrossrefPubMedGoogle Scholar

Dubyk, K., Borisova, T., Paliienko, K., Krisanova, N., Isaiev, M., Alekseev, S., Skryshevsky, V., Lysenko, V., & Geloen, A. (2022). Bio-distribution of carbon nanoparticles studied by photoacoustic measurements. Nanoscale Research Letters, 17(1), 127. doi:10.1186/s11671-022-03768-3
CrossrefPubMedPMCGoogle Scholar

Ghirardello, M., Ramos-Soriano, J., & Galan, M. C. (2021). Carbon dots as an emergent class of antimicrobial agents. Nanomaterials, 11(8), 1877. doi:10.3390/nano11081877
CrossrefPubMedPMCGoogle Scholar

Goertz, O., Popp, A., Kolbenschlag, J., Vogelpohl, J., Daigeler, A., Ring, A., Lehnhardt, M., & Hirsch, T. (2013). Intravital pathophysiological comparison of acid- and alkali-burn injuries in a murine model. Journal of Surgical Research, 182(2), 347-352. doi:10.1016/j.jss.2012.10.020
CrossrefPubMedGoogle Scholar

Gujju, R., Dewanjee, S., Singh, K., Andugulapati, S. B., Tirunavalli, S. K., Jaina, V. K., Kandimalla, R., Misra, S., & Puvvada, N. (2023). Carbon dots' potential in wound healing: inducing M2 macrophage polarization and demonstrating antibacterial properties for accelerated recovery. ACS Applied Bio Materials, 6(11), 4814-4827. doi:10.1021/acsabm.3c00578
CrossrefPubMedGoogle Scholar

Hardwicke, J., Hunter, T., Staruch, R., & Moiemen, N. (2012). Chemical burns - an historical comparison and review of the literature. Burns, 38(3), 383-387. doi:10.1016/j.burns.2011.09.014
CrossrefPubMedGoogle Scholar

Hong, W., Liu, Y., Li, M.-H., Xing, Y.-X., Chen, T., Fu, Y.-H., Jiang, L., Zhao, H., Jia, A., & Wang, J.-S. (2018). In vivo toxicology of carbon dots by 1H NMR-based metabolomics. Toxicology Research, 7(5), 834-847. doi:10.1039/c8tx00049b
CrossrefPubMedPMCGoogle Scholar

Ivanov, I. I., Zaderko, A. N., Lysenko, V., Clopeau, T., Lisnyak, V. V., & Skryshevsky, V. A. (2021). Photoluminescent recognition of strong alcoholic beverages with carbon nanoparticles. ACS omega, 6(29), 18802-18810. doi:10.1021/acsomega.1c01953
CrossrefPubMedPMCGoogle Scholar

Jeschke, M. G., van Baar, M. E., Choudhry, M. A., Chung, K. K., Gibran, N. S., & Logsetty, S. (2020). Burn injury. Nature Reviews Disease Primers, 6(1), 11. doi:10.1038/s41572-020-0145-5
CrossrefPubMedPMCGoogle Scholar

Kasouni, A.I., Chatzimitakos, T.G., Troganis, A.N., Stalikas, C.D. (2021). Citric acid-based carbon dots: from revealing new insights into their biological properties to demonstrating their enhanced wound healing potential by in vitro and in vivo experiments. Materials Today Communications, 26, 102019. doi:10.1016/j.mtcomm.2021.102019
CrossrefGoogle Scholar

Kiernan, J. A. (2008). Histological and histochemical methods: theory and practice. Oxford, United Kingdom: Scion.
Google Scholar

Kuznietsova, H., Dziubenko, N., Paliienko, K., Pozdnyakova, N., Krisanova, N., Pastukhov, A., Lysenko, T., Dudarenko, M., Skryshevsky, V., Lysenko, V., & Borisova, T. (2023a). A comparative multi-level toxicity assessment of carbon-based Gd-free dots and Gd-doped nanohybrids from coffee waste: hematology, biochemistry, histopathology and neurobiology study. Scientific Reports, 13(1), 9306. doi:10.1038/s41598-023-36496-4
CrossrefPubMedPMCGoogle Scholar

Kuznietsova, H., Géloën, A., Dziubenko, N., Zaderko, A., Alekseev, S., Lysenko, V., & Skryshevsky, V. (2023b). In vitro and in vivo toxicity of carbon dots with different chemical compositions. Discover Nano, 18(1), 111. doi:10.1186/s11671-023-03891-9
CrossrefPubMedPMCGoogle Scholar

Lee, B.-C., Lee, J. Y., Kim, J., Yoo, J. M., Kang, I., Kim, J.-J., Shin, N., Kim, D. J., Choi, S. W., Kim, D., Hong, B. H., & Kang, K.-S. (2020). Graphene quantum dots as anti-inflammatory therapy for colitis. Science Advances, 6(18), eaaz2630. doi:10.1126/sciadv.aaz2630
CrossrefPubMedPMCGoogle Scholar

Lu, F., Yang, S., Song, Y., Zhai, C., Wang, Q., Ding, G., & Kang, Z. (2019). Hydroxyl functionalized carbon dots with strong radical scavenging ability promote cell proliferation. Materials Research Express, 6(6), 065030. doi:10.1088/2053-1591/ab0c55
CrossrefGoogle Scholar

Mussabek, G., Zhylkybayeva, N., Lysenko, I., Lishchuk, P. O., Baktygerey, S., Yermukhamed, D., Taurbayev, Y., Sadykov, G., Zaderko, A. N., Skryshevsky, V. A., Lisnyak, V. V., & Lysenko, V. (2022). Photo- and radiofrequency-induced heating of photoluminescent colloidal carbon dots. Nanomaterials, 12(14), 2426. doi:10.3390/nano12142426
CrossrefPubMedPMCGoogle Scholar

Park, J., & Kim, Y.-C. (2021). Topical delivery of 5-fluorouracil-loaded carboxymethyl chitosan nanoparticles using microneedles for keloid treatment. Drug Delivery and Translational Research, 11(1), 205-213. doi:10.1007/s13346-020-00781-w
CrossrefPubMedGoogle Scholar

Standard of Burns Medical Care, Order of Ministry of Health of Ukraine, No. 1767 dated 09.10.2023. Retrieved from https://moz.gov.ua/article/ministry-mandates/nakaz-moz-ukraini-vid-06102023--1767-pro-zatverdzhennja-standartu-medichnoi-dopomogi-opiki (In Ukrainian)

Qu, X., Gao, C., Fu, L., Chu, Y., Wang, J. H., Qiu, H., & Chen, J. (2023). Positively charged carbon dots with antibacterial and antioxidant dual activities for promoting infected wound healing. ACS Applied Materials & Interfaces, 15(15), 18608-18619. doi:10.1021/acsami.2c21839
CrossrefPubMedGoogle Scholar

Ribeiro, D. M. L., Carvalho Júnior, A. R., Vale de Macedo, G. H. R., Chagas, V. L., Silva, L. D. S., Cutrim, B. D. S., Santos, D. M., Soares, B. L. L., Zagmignan, A., de Miranda, R. C. M., de Albuquerque, P. B. S., & Nascimento da Silva, L. C. (2019). Polysaccharide-based formulations for healing of skin-related wound infections: lessons from animal models and clinical trials. Biomolecules, 10(1), 63. doi:10.3390/biom10010063
CrossrefPubMedPMCGoogle Scholar

Yu, Z., Gao, L., Chen, K., Zhang, W., Zhang, Q., Li, Q., & Hu, K. (2021). Nanoparticles: a new approach to upgrade cancer diagnosis and treatment. Nanoscale Research Letters, 16(1), 88. doi:10.1186/s11671-021-03489-z
CrossrefPubMedPMCGoogle Scholar

Zhang, S., Pei, X., Xue, Y., Xiong, J., & Wang, J. (2020). Bio-safety assessment of carbon quantum dots, N-doped and folic acid modified carbon quantum dots: a systemic comparison. Chinese Chemical Letters, 31(6), 1654-1659. doi:10.1016/j.cclet.2019.09.018
CrossrefGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Halyna Kuznietsova, Arsen Ishchuk, Roman Bogatyryov, Bohdana Bozhenko, Margaryta Kurylenko, Ivan Lysenko, Tetiana Lysenko, Taras Rybalchenko, Oleksandr Ogloblya, Yury Ryabchikov, Oleksandr Zaderko, Nataliia Dziubenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.