CARBON DOT DRESSING AS A TREATMENT OF ALKALI-INDUCED SKIN BURNS
DOI: http://dx.doi.org/10.30970/sbi.1801.758
Abstract
Background. Chemical burns, comprising 5–10 % of total burns but causing 30 % of burn-related deaths, are now a notable concern in Ukraine. Current clinical protocols lack specific approaches for chemical burns, and research on this type of burn is limited. Carbon-based nanoparticles show promise for wound healing because of anti-inflammatory, antioxidant, and antibacterial activities. So, the ability of carbon dots obtained from citric acid and urea (further called CD) to improve the healing of alkali-induced skin burn was aimed to be discovered.
Materials and Methods. The study was conducted on male Wistar rats. Burn was modeled by application of gauze disc soaked with 3 M NaOH solution on shaved skin of anesthetized rats for 10 min. A CD dressing, consisting of a CD solution (1 mg/mL) mixed with cellulose-based hydrogel that served as a vehicle, was applied to burned skin daily during a 7-day period. There were following groups: control (healthy rats), a burn-only group (rats that received no dressing), a burn + vehicle group (rats that received vehicle dressing), and a burn + CD group (rats that received CD dressing). The study involved monitoring of burn areas, conducting skin histopathology, and performing blood biochemical analyses.
Results. The daily CD dressing significantly decreased alkali-induced burn area (by 76 % compared to 40 % in burn-only group) after seven daily dressings. The level of inflammation in the burn site was also less expressed in CD-treated animals, compared to respective controls (non-treated animals and animals treated with Vehicle). There was no substantial systemic toxicity of the burn (of such area) and its healing, manifested by absence of body weight loss, and absence of dramatical changes in serum biochemical parameters (indicators of liver and kidney function). However, animals of all the groups that experienced burns had a significantly lower body weight gain and mesenteric lymph nodes weight compared to healthy rats.
Conclusions. So, the application of carbon dots mixed with hydrogel speeded up alkali-induced burn healing without negative impact on the organism.
Keywords
Full Text:
PDFReferences
Alven, S., & Aderibigbe, B. A. (2020). Chitosan and cellulose-based hydrogels for wound management. International Journal of Molecular Sciences, 21(24), 9656. doi:10.3390/ijms21249656 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Andrews, K., Mowlavi, A., & Milner, S. M. (2003). The treatment of alkaline burns of the skin by neutralization. Plastic and Reconstructive Surgery, 111(6), 1918-1921. doi:10.1097/01.prs.0000058953.16695.a7 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Dubyk, K., Borisova, T., Paliienko, K., Krisanova, N., Isaiev, M., Alekseev, S., Skryshevsky, V., Lysenko, V., & Geloen, A. (2022). Bio-distribution of carbon nanoparticles studied by photoacoustic measurements. Nanoscale Research Letters, 17(1), 127. doi:10.1186/s11671-022-03768-3 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Ghirardello, M., Ramos-Soriano, J., & Galan, M. C. (2021). Carbon dots as an emergent class of antimicrobial agents. Nanomaterials, 11(8), 1877. doi:10.3390/nano11081877 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Goertz, O., Popp, A., Kolbenschlag, J., Vogelpohl, J., Daigeler, A., Ring, A., Lehnhardt, M., & Hirsch, T. (2013). Intravital pathophysiological comparison of acid- and alkali-burn injuries in a murine model. Journal of Surgical Research, 182(2), 347-352. doi:10.1016/j.jss.2012.10.020 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Gujju, R., Dewanjee, S., Singh, K., Andugulapati, S. B., Tirunavalli, S. K., Jaina, V. K., Kandimalla, R., Misra, S., & Puvvada, N. (2023). Carbon dots' potential in wound healing: inducing M2 macrophage polarization and demonstrating antibacterial properties for accelerated recovery. ACS Applied Bio Materials, 6(11), 4814-4827. doi:10.1021/acsabm.3c00578 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Hardwicke, J., Hunter, T., Staruch, R., & Moiemen, N. (2012). Chemical burns - an historical comparison and review of the literature. Burns, 38(3), 383-387. doi:10.1016/j.burns.2011.09.014 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Hong, W., Liu, Y., Li, M.-H., Xing, Y.-X., Chen, T., Fu, Y.-H., Jiang, L., Zhao, H., Jia, A., & Wang, J.-S. (2018). In vivo toxicology of carbon dots by 1H NMR-based metabolomics. Toxicology Research, 7(5), 834-847. doi:10.1039/c8tx00049b Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Ivanov, I. I., Zaderko, A. N., Lysenko, V., Clopeau, T., Lisnyak, V. V., & Skryshevsky, V. A. (2021). Photoluminescent recognition of strong alcoholic beverages with carbon nanoparticles. ACS omega, 6(29), 18802-18810. doi:10.1021/acsomega.1c01953 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Jeschke, M. G., van Baar, M. E., Choudhry, M. A., Chung, K. K., Gibran, N. S., & Logsetty, S. (2020). Burn injury. Nature Reviews Disease Primers, 6(1), 11. doi:10.1038/s41572-020-0145-5 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Kasouni, A.I., Chatzimitakos, T.G., Troganis, A.N., Stalikas, C.D. (2021). Citric acid-based carbon dots: from revealing new insights into their biological properties to demonstrating their enhanced wound healing potential by in vitro and in vivo experiments. Materials Today Communications, 26, 102019. doi:10.1016/j.mtcomm.2021.102019 Crossref ● Google Scholar | ||||
| ||||
Kiernan, J. A. (2008). Histological and histochemical methods: theory and practice. Oxford, United Kingdom: Scion. Google Scholar | ||||
| ||||
Kuznietsova, H., Dziubenko, N., Paliienko, K., Pozdnyakova, N., Krisanova, N., Pastukhov, A., Lysenko, T., Dudarenko, M., Skryshevsky, V., Lysenko, V., & Borisova, T. (2023a). A comparative multi-level toxicity assessment of carbon-based Gd-free dots and Gd-doped nanohybrids from coffee waste: hematology, biochemistry, histopathology and neurobiology study. Scientific Reports, 13(1), 9306. doi:10.1038/s41598-023-36496-4 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Kuznietsova, H., Géloën, A., Dziubenko, N., Zaderko, A., Alekseev, S., Lysenko, V., & Skryshevsky, V. (2023b). In vitro and in vivo toxicity of carbon dots with different chemical compositions. Discover Nano, 18(1), 111. doi:10.1186/s11671-023-03891-9 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Lee, B.-C., Lee, J. Y., Kim, J., Yoo, J. M., Kang, I., Kim, J.-J., Shin, N., Kim, D. J., Choi, S. W., Kim, D., Hong, B. H., & Kang, K.-S. (2020). Graphene quantum dots as anti-inflammatory therapy for colitis. Science Advances, 6(18), eaaz2630. doi:10.1126/sciadv.aaz2630 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Lu, F., Yang, S., Song, Y., Zhai, C., Wang, Q., Ding, G., & Kang, Z. (2019). Hydroxyl functionalized carbon dots with strong radical scavenging ability promote cell proliferation. Materials Research Express, 6(6), 065030. doi:10.1088/2053-1591/ab0c55 Crossref ● Google Scholar | ||||
| ||||
Mussabek, G., Zhylkybayeva, N., Lysenko, I., Lishchuk, P. O., Baktygerey, S., Yermukhamed, D., Taurbayev, Y., Sadykov, G., Zaderko, A. N., Skryshevsky, V. A., Lisnyak, V. V., & Lysenko, V. (2022). Photo- and radiofrequency-induced heating of photoluminescent colloidal carbon dots. Nanomaterials, 12(14), 2426. doi:10.3390/nano12142426 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Park, J., & Kim, Y.-C. (2021). Topical delivery of 5-fluorouracil-loaded carboxymethyl chitosan nanoparticles using microneedles for keloid treatment. Drug Delivery and Translational Research, 11(1), 205-213. doi:10.1007/s13346-020-00781-w Crossref ● PubMed ● Google Scholar | ||||
| ||||
Standard of Burns Medical Care, Order of Ministry of Health of Ukraine, No. 1767 dated 09.10.2023. Retrieved from https://moz.gov.ua/article/ministry-mandates/nakaz-moz-ukraini-vid-06102023--1767-pro-zatverdzhennja-standartu-medichnoi-dopomogi-opiki (In Ukrainian) | ||||
| ||||
Qu, X., Gao, C., Fu, L., Chu, Y., Wang, J. H., Qiu, H., & Chen, J. (2023). Positively charged carbon dots with antibacterial and antioxidant dual activities for promoting infected wound healing. ACS Applied Materials & Interfaces, 15(15), 18608-18619. doi:10.1021/acsami.2c21839 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Ribeiro, D. M. L., Carvalho Júnior, A. R., Vale de Macedo, G. H. R., Chagas, V. L., Silva, L. D. S., Cutrim, B. D. S., Santos, D. M., Soares, B. L. L., Zagmignan, A., de Miranda, R. C. M., de Albuquerque, P. B. S., & Nascimento da Silva, L. C. (2019). Polysaccharide-based formulations for healing of skin-related wound infections: lessons from animal models and clinical trials. Biomolecules, 10(1), 63. doi:10.3390/biom10010063 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Yu, Z., Gao, L., Chen, K., Zhang, W., Zhang, Q., Li, Q., & Hu, K. (2021). Nanoparticles: a new approach to upgrade cancer diagnosis and treatment. Nanoscale Research Letters, 16(1), 88. doi:10.1186/s11671-021-03489-z Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Zhang, S., Pei, X., Xue, Y., Xiong, J., & Wang, J. (2020). Bio-safety assessment of carbon quantum dots, N-doped and folic acid modified carbon quantum dots: a systemic comparison. Chinese Chemical Letters, 31(6), 1654-1659. doi:10.1016/j.cclet.2019.09.018 Crossref ● Google Scholar |
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Halyna Kuznietsova, Arsen Ishchuk, Roman Bogatyryov, Bohdana Bozhenko, Margaryta Kurylenko, Ivan Lysenko, Tetiana Lysenko, Taras Rybalchenko, Oleksandr Ogloblya, Yury Ryabchikov, Oleksandr Zaderko, Nataliia Dziubenko
This work is licensed under a Creative Commons Attribution 4.0 International License.