EXPRESSION ON HEXOKINASE AND 6-PHOSPHOFRUCTO-2-KINASE/FRUCTOSE-2,6-BISPHOSPHATASE GENEN IN ERN1 KNOCKDOWN GLIOMA U87 CELLS: EFFECT OF HYPOXIA AND GLUTAMINE OR GLUCOSE DEPRIVATION

D. O. Minchenko, R. Y. Marunych, E. V. Khomenko, T. V. Bakalets, O. H. Minchenko


DOI: http://dx.doi.org/10.30970/sbi.0503.172

Abstract


Endoplasmic reticulum stress, as well as hypoxia and ischemia, are important factors for tumor neovascularization and growth. Cancer cells preferentially utilize glycolysis in order to satisfy their increased energetic and biosynthetic requirements. High glucose metabolism of cancer cells is caused by a combination of hypoxia-responsive transcription factors, activation of oncogenic proteins and the loss of tumor suppressor function and is realized in part by activating a family of regulatory bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases (PFKFB) and hexokinase 2. We have studied the effect of hypoxia and ischemia on the expression of PFKFB and hexokinase genes in glioma cell line U87 under knockdown of endoplasmic reticulum–nuclei-1 (ERN1) sensing and signaling enzyme. It was shown that loss of the signaling enzyme ERN1 function leads to an increase in the expression levels of HK1, HK2, PFKFB3 and PFKFB4 mRNA. Moreover, the expression levels of all studied genes increase under hypoxia in control and ERN1-deficient glioma cells; however knockdown of ERN1 suppresses the effect of hypoxia. Besides, HK2 and PFKFB4 are more sensitive to hypoxia than HK1 and PFKFB3. Glucose or glutamine deprivation conditions have different effects on the expression levels of these genes and its effect depends mainly on ERN1 function. Expression levels of alternative splice variants of PFKFB3 and PFKFB4 mRNA change at used experimental conditions in a fashion similar to the basic PFKFB variants. Thus, the expression of hexokinase and PFKFB genes is mainly dependent on ERN1 signaling enzyme function in normal, hypoxic and ischemic conditions.


Keywords


mRNA expression, HK1, HK2, PFKFB3, PFKFB4, glioma cells, ERN1 knockdown, hypoxia, glucose and glutamine deprivation

Full Text:

PDF

References


1. Yalcin A., Telang S., Clem B., Chesney J. Regulation of glucose metabolism by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases in cancer. Experimental and Molecular Pathology, 2009; 86(3): 174-179.
https://doi.org/10.1016/j.yexmp.2009.01.003
PMid:19454274

2. Wolf A., Agnihotri S., Micallef J. et al. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. The Journal of Experimental Medicine, 2011; 208(2): 313-326.
https://doi.org/10.1084/jem.20101470
PMid:21242296 PMCid:PMC3039857

3. Wu C., Khan S.A., Peng L.-J., Lange A. J. Roles for fructose-2,6-bisphosphate in the control of fuel metabolism: beyond its allosteric effects on glycolytic and gluconeogenic enzymes. Advances in Enzyme Regulation, 2006; 46: 72-88.
https://doi.org/10.1016/j.advenzreg.2006.01.010
PMid:16860376

4. Rider M. H., Bertrand L., Vertommen D. et al. 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase: head-head with a bifunctional enzyme that controls glycolysis. Biochemical Journal, 2004; 381(Pt. 3): 561-579.
https://doi.org/10.1042/BJ20040752
PMid:15170386 PMCid:PMC1133864

5. Мінченко Д.О., Бобарикіна А.Ю., Кундієва А.В. та ін. Структурна організація, експресія та регуляція експресії генів 6-фосфофрукто-2-кінази/фруктозо-2,6-бісфосфатази. Біологічні студії/Studia Biologica, 2009; 3(3): 123-140.
https://doi.org/10.30970/sbi.0303.040

6. Minchenko A. G., Leshchinsky I., Opentanova I. L. et al. Hypoxia-inducible factor-1-mediated expression of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) gene. The Journal of Biological Chemistry, 2002; 277(8): 6183-6187.
https://doi.org/10.1074/jbc.M110978200
PMid:11744734 PMCid:PMC4518871

7. Minchenko O., Opentanova I., Caro J. Hypoxic regulation of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene family (PFKFB-1-4) expression in vivo. FEBS Letters, 2003; 554(3): 264-270.
https://doi.org/10.1016/S0014-5793(03)01179-7

8. Minchenko O. H., Opentanova I. L., Minchenko D. O. et al. Hypoxia induces transcription of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 gene via hypoxia-inducible factor-1alpha activation. FEBS Letters, 2004; 576(1): 14-20.
https://doi.org/10.1016/j.febslet.2004.08.053
PMid:15474002

9. Minchenko O. H., Ochiai A., Opentanova I. L. et al. Overexpression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-4 in the human breast and colon malignant tumors. Biochimie, 2005; 87(11): 1005-1010.
https://doi.org/10.1016/j.biochi.2005.04.007
PMid:15925437

10. Chesney J. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase and tumor cell glycolysis. Current Opinion in Clinical Nutrition & Metabolic Care, 2006; 9(5): 535-539.
https://doi.org/10.1097/01.mco.0000241661.15514.fb
PMid:16912547

11. Bartrons R., Caro J. Hypoxia, glucose metabolism and the Warburg's effect. Journal of Bioenergetics and Biomembranes, 2007; 39(3): 223-229.
https://doi.org/10.1007/s10863-007-9080-3
PMid:17661163

12. Yalcin A., Clem B.F., Simmons A. et al. Nuclear targeting of 6-phosphofructo-2-kinase (PFKFB3) increases proliferation via cyclin-dependent kinase. The Journal of Biological Chemistry, 2009; 284(36): 24223 -24232.
https://doi.org/10.1074/jbc.M109.016816
PMid:19473963 PMCid:PMC2782016

13. Kessler R., Bleichert F., Warnke J. P., Eschrich K. 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3) is up-regulated in high-grade astrocytomas. Journal of Neuro-Oncology, 2008;86(3): 257-264.
https://doi.org/10.1007/s11060-007-9471-7
PMid:17805487

14. Atsumi T., Nishio T., Niwa H. et al. Expression of inducible 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase/PFKFB3 isoforms in adipocytes and their potential role in glycolytic regulation. Diabetes, 2005; 54(12): 3349-3357.
https://doi.org/10.2337/diabetes.54.12.3349
PMid:16306349

15. Minchenko O.H., Ogura T., Opentanova I.L. et al. Splice isoform of 6-phosphofructo-2-kinase/ fructose-2,6-bisphosphatase-4: expression and hypoxic regulation. Molecular and Cellular Biochemistry, 2005; 280(1-2): 227 - 234.
https://doi.org/10.1007/s11010-005-8009-6
PMid:16311927

16. Moon J.S., Jin W.J., Kwak J.H. et al. Androgen stimulates glycolysis for de novo lipid synthesis by increasing the activities of hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2 in prostate cancer cells. Biochemical Journal, 2011; 433(1): 225-233.
https://doi.org/10.1042/BJ20101104
PMid:20958264

17. Aragón T., van Anken E., Pincus D. et al. Messenger RNA targeting to endoplasmic reticulum stress signalling sites. Nature, 2009; 457(7230): 736-740.
https://doi.org/10.1038/nature07641
PMid:19079237 PMCid:PMC2768538

18. Bi M., Naczki C., Koritzinsky M. et al. ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. EMBO Journal, 2005; 24(19): 3470-3481.
https://doi.org/10.1038/sj.emboj.7600777
PMid:16148948 PMCid:PMC1276162

19. Fels D.R., Koumenis C. The PERK/eIF2a/ATF4 module of the UPR in hypoxia resistance and tumor growth. Cancer Biology and Therapy, 2006; 5(7): 723-728.
https://doi.org/10.4161/cbt.5.7.2967
PMid:16861899

20. Romero-Ramirez L., Cao H., Nelson D. et al. XBP1 is essential for survival under hypoxic conditions and is required for tumor growth. Cancer Research, 2004; 64(17): 5943-5947.
https://doi.org/10.1158/0008-5472.CAN-04-1606
PMid:15342372

21. Acosta-Alvear D., Zhou Y., Blais A. et al. XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks. Molecular Cell, 2007; 27: 53-66.
https://doi.org/10.1016/j.molcel.2007.06.011
PMid:17612490

22. Auf G., Jabouille A., Guérit S. et al. A shift from an angiogenic to invasive phenotype induced in malignant glioma by inhibition of the unfolded protein response sensor IRE1. The Proceeding of the National Academy of Sciences of the United States of America, 2010; 107(35): 15553-15558.
https://doi.org/10.1073/pnas.0914072107
PMid:20702765 PMCid:PMC2932600

23. Drogat B., Auguste P., Nguyen D.T. et al. IRE1 signaling is essential for ischemia-induced vascular endothelial growth factor-A expression and contributes to angiogenesis and tumor growth in vivo. Cancer Research, 2007; 67(14): 6700-6707.
https://doi.org/10.1158/0008-5472.CAN-06-3235
PMid:17638880

24. Moenner M., Pluquet O., Bouchecareilh M., Chevet E. Integrated endoplasmic reticulum stress responses in cancer. Cancer Research, 2007; 67(22): 10631-10634.
https://doi.org/10.1158/0008-5472.CAN-07-1705
PMid:18006802

25. Minchenko D.M., Hubenya O.V., Terletsky B.M. et al. Effect of hypoxia, glutamine and glucose deprivation on the expression of cyclin and cyclin-dependent kinase genes in glioma cell line U87 and its subline with suppressed activity of signaling enzyme endoplasmic reticulum-nuclei-1. The Ukrainian Biochemical Journal, 2011; 83(1): 5-16.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2011 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.