EXPRESSION ON HEXOKINASE AND 6-PHOSPHOFRUCTO-2-KINASE/FRUCTOSE-2,6-BISPHOSPHATASE GENEN IN ERN1 KNOCKDOWN GLIOMA U87 CELLS: EFFECT OF HYPOXIA AND GLUTAMINE OR GLUCOSE DEPRIVATION
DOI: http://dx.doi.org/10.30970/sbi.0503.172
Abstract
Endoplasmic reticulum stress, as well as hypoxia and ischemia, are important factors for tumor neovascularization and growth. Cancer cells preferentially utilize glycolysis in order to satisfy their increased energetic and biosynthetic requirements. High glucose metabolism of cancer cells is caused by a combination of hypoxia-responsive transcription factors, activation of oncogenic proteins and the loss of tumor suppressor function and is realized in part by activating a family of regulatory bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases (PFKFB) and hexokinase 2. We have studied the effect of hypoxia and ischemia on the expression of PFKFB and hexokinase genes in glioma cell line U87 under knockdown of endoplasmic reticulum–nuclei-1 (ERN1) sensing and signaling enzyme. It was shown that loss of the signaling enzyme ERN1 function leads to an increase in the expression levels of HK1, HK2, PFKFB3 and PFKFB4 mRNA. Moreover, the expression levels of all studied genes increase under hypoxia in control and ERN1-deficient glioma cells; however knockdown of ERN1 suppresses the effect of hypoxia. Besides, HK2 and PFKFB4 are more sensitive to hypoxia than HK1 and PFKFB3. Glucose or glutamine deprivation conditions have different effects on the expression levels of these genes and its effect depends mainly on ERN1 function. Expression levels of alternative splice variants of PFKFB3 and PFKFB4 mRNA change at used experimental conditions in a fashion similar to the basic PFKFB variants. Thus, the expression of hexokinase and PFKFB genes is mainly dependent on ERN1 signaling enzyme function in normal, hypoxic and ischemic conditions.
Keywords
Full Text:
PDFReferences
1. Yalcin A., Telang S., Clem B., Chesney J. Regulation of glucose metabolism by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases in cancer. Experimental and Molecular Pathology, 2009; 86(3): 174-179. | |
| |
2. Wolf A., Agnihotri S., Micallef J. et al. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. The Journal of Experimental Medicine, 2011; 208(2): 313-326. | |
| |
3. Wu C., Khan S.A., Peng L.-J., Lange A. J. Roles for fructose-2,6-bisphosphate in the control of fuel metabolism: beyond its allosteric effects on glycolytic and gluconeogenic enzymes. Advances in Enzyme Regulation, 2006; 46: 72-88. | |
| |
4. Rider M. H., Bertrand L., Vertommen D. et al. 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase: head-head with a bifunctional enzyme that controls glycolysis. Biochemical Journal, 2004; 381(Pt. 3): 561-579. | |
| |
5. Мінченко Д.О., Бобарикіна А.Ю., Кундієва А.В. та ін. Структурна організація, експресія та регуляція експресії генів 6-фосфофрукто-2-кінази/фруктозо-2,6-бісфосфатази. Біологічні студії/Studia Biologica, 2009; 3(3): 123-140. | |
| |
6. Minchenko A. G., Leshchinsky I., Opentanova I. L. et al. Hypoxia-inducible factor-1-mediated expression of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) gene. The Journal of Biological Chemistry, 2002; 277(8): 6183-6187. | |
| |
7. Minchenko O., Opentanova I., Caro J. Hypoxic regulation of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene family (PFKFB-1-4) expression in vivo. FEBS Letters, 2003; 554(3): 264-270. | |
| |
8. Minchenko O. H., Opentanova I. L., Minchenko D. O. et al. Hypoxia induces transcription of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 gene via hypoxia-inducible factor-1alpha activation. FEBS Letters, 2004; 576(1): 14-20. | |
| |
9. Minchenko O. H., Ochiai A., Opentanova I. L. et al. Overexpression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-4 in the human breast and colon malignant tumors. Biochimie, 2005; 87(11): 1005-1010. | |
| |
10. Chesney J. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase and tumor cell glycolysis. Current Opinion in Clinical Nutrition & Metabolic Care, 2006; 9(5): 535-539. | |
| |
11. Bartrons R., Caro J. Hypoxia, glucose metabolism and the Warburg's effect. Journal of Bioenergetics and Biomembranes, 2007; 39(3): 223-229. | |
| |
12. Yalcin A., Clem B.F., Simmons A. et al. Nuclear targeting of 6-phosphofructo-2-kinase (PFKFB3) increases proliferation via cyclin-dependent kinase. The Journal of Biological Chemistry, 2009; 284(36): 24223 -24232. | |
| |
13. Kessler R., Bleichert F., Warnke J. P., Eschrich K. 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3) is up-regulated in high-grade astrocytomas. Journal of Neuro-Oncology, 2008;86(3): 257-264. | |
| |
14. Atsumi T., Nishio T., Niwa H. et al. Expression of inducible 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase/PFKFB3 isoforms in adipocytes and their potential role in glycolytic regulation. Diabetes, 2005; 54(12): 3349-3357. | |
| |
15. Minchenko O.H., Ogura T., Opentanova I.L. et al. Splice isoform of 6-phosphofructo-2-kinase/ fructose-2,6-bisphosphatase-4: expression and hypoxic regulation. Molecular and Cellular Biochemistry, 2005; 280(1-2): 227 - 234. | |
| |
16. Moon J.S., Jin W.J., Kwak J.H. et al. Androgen stimulates glycolysis for de novo lipid synthesis by increasing the activities of hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2 in prostate cancer cells. Biochemical Journal, 2011; 433(1): 225-233. | |
| |
17. Aragón T., van Anken E., Pincus D. et al. Messenger RNA targeting to endoplasmic reticulum stress signalling sites. Nature, 2009; 457(7230): 736-740. | |
| |
18. Bi M., Naczki C., Koritzinsky M. et al. ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. EMBO Journal, 2005; 24(19): 3470-3481. | |
| |
19. Fels D.R., Koumenis C. The PERK/eIF2a/ATF4 module of the UPR in hypoxia resistance and tumor growth. Cancer Biology and Therapy, 2006; 5(7): 723-728. | |
| |
20. Romero-Ramirez L., Cao H., Nelson D. et al. XBP1 is essential for survival under hypoxic conditions and is required for tumor growth. Cancer Research, 2004; 64(17): 5943-5947. | |
| |
21. Acosta-Alvear D., Zhou Y., Blais A. et al. XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks. Molecular Cell, 2007; 27: 53-66. | |
| |
22. Auf G., Jabouille A., Guérit S. et al. A shift from an angiogenic to invasive phenotype induced in malignant glioma by inhibition of the unfolded protein response sensor IRE1. The Proceeding of the National Academy of Sciences of the United States of America, 2010; 107(35): 15553-15558. | |
| |
23. Drogat B., Auguste P., Nguyen D.T. et al. IRE1 signaling is essential for ischemia-induced vascular endothelial growth factor-A expression and contributes to angiogenesis and tumor growth in vivo. Cancer Research, 2007; 67(14): 6700-6707. | |
| |
24. Moenner M., Pluquet O., Bouchecareilh M., Chevet E. Integrated endoplasmic reticulum stress responses in cancer. Cancer Research, 2007; 67(22): 10631-10634. | |
| |
25. Minchenko D.M., Hubenya O.V., Terletsky B.M. et al. Effect of hypoxia, glutamine and glucose deprivation on the expression of cyclin and cyclin-dependent kinase genes in glioma cell line U87 and its subline with suppressed activity of signaling enzyme endoplasmic reticulum-nuclei-1. The Ukrainian Biochemical Journal, 2011; 83(1): 5-16. |
Refbacks
- There are currently no refbacks.
Copyright (c) 2011 Studia biologica
This work is licensed under a Creative Commons Attribution 4.0 International License.