SELECTIVE DEGRADATION OF PEROXISOMES IN THE YEAST HANSENULA POLYMORPHA REQUIRES STEROLGLUCOSYLTRANSFERASE Atg26
DOI: http://dx.doi.org/10.30970/sbi.0502.149
Abstract
UDP-glucose:sterol glucosyltransferase (EC 2.4.1.173) catalyses the biosynthesis of ergosterol glucoside, a minor membrane lipid present in yeasts and plants. The sterol glucosyltransferases from different yeast species, including the methylotrophic yeast Pichia pastoris, display narrow substrate specificity with respect to both activated sugar and glycosyl acceptor. We isolated the mutant of the methanol-utilizing yeast Hansenula polymorpha defective in the ATG26 gene (encoding sterol glucosyltransferase) and analysed its phenotype. Similarly to P. pastoris product of the H. polymorpha ATG26 gene was required for pexophagy, the process of selective autophagic peroxisome degradation in vacuoles. Thus, sterol glucosyltransferases in different species of methylotrophic yeasts have a similar function in pexophagic process probably related to peculiarities of peroxisome morphogenesis and regulation of their homeostasis in these yeasts.
Keywords
Full Text:
PDF (Українська)References
1. Bellu A. R., Kiel J. A. Selective degradation of peroxisomes in yeasts. Microsc. Res. Tech, 2003; 61: 161-170. | |
| |
2. Cao Y., Klionsky D.J. Atg26 is not involved in autophagy-related pathways in Saccharomyces cerevisiae. Autophagy, 2007; 3: 17-20. | |
| |
3. Doerks T., Strauss M., Brendel M., Bork P. GRAM, a novel domain in glucosyltransferases, myotubularins and other putative membrane-associated proteins. Trends Biochem. Sci, 2000; 25(10): 483-485. | |
| |
4. Dunn W. A. Jr., Cregg J. M., Kiel J.A.K.W. et al. Pexophagy: the selective autophagy of peroxisomes. Autophagy, 2005; 1: 75-83. | |
| |
5. Faber K.N., Haima P., Harder W. et al. Highly-efficient electrotransformation of the yeast Hansenula polymorpha. Curr Genet, 1994; 25: 305-310. | |
| |
6. Farré J.C., Subramani S. Peroxisome turnover by micropexophagy: an autophagy-related process. Trends Cell Biol, 2004; 14: 515-523. | |
| |
7. Gleeson M.A., Sudbery P.E. Genetic analysis in the methylotrophic yeast Hansenula polymorpha. Yeast, 1988; 4: 293-303. | |
| |
8. Heese-Peck A., Pichler H., Zanolari B. et al. Multiple functions of sterols in yeast endocytosis. Mol. Biol. Cell, 2002; 13(8): 2664-2680. | |
| |
9. Iwata J., Ezaki J., Komatsu M. et al. Excess peroxisomes are degraded by autophagic machinery in mammals. J. Biol. Chem, 2006; 17: 4035-4041. | |
| |
10. Kawamata T., Kamada Y., Suzuki K. et al. Characterization of a novel autophagy-specific gene, ATG29. Biochem. Biophys. Res, 2005; 30: 1884-1889. | |
| |
11. Kiel J.A., Komduur J. A., van der Klei I.J., Veenhuis M. Macropexophagy in Hansenula polymorpha: facts and views. FEBS. Lett, 2003; 14: 1-6. | |
| |
12. Kim J., Kamada Y., Stromhaug P. E. et al. Cvt9/Gsa9 functions in sequestering selective cytosolic cargo destined for the vacuole. J. Cell Biol, 2001; 16: 381-396. | |
| |
13. Klionsky D.J., Cregg J.M., Dunn W.A. et al. A unified nomenclature for yeast autophagy-related genes. Dev. Cell, 2003; 5: 539-545. | |
| |
14. Komduur J.A. Molecular aspects of peroxisome degradation in Hansenula polymorpha. Haren, The Netherlands: University of Groningen, 2004. | |
| |
15. Lemmon M.A., Ferguson K.M. Signal-dependent membrane targeting by pleckstrin homology (PH) domains. Biochem. J, 2000; 350(1): 1-18. | |
| |
16. Luers G.H., Advani R., Wenzel T., Subramani S. The Pichia pastoris dihydroxyacetone kinase is a PTS1-containing, but cytosolic, protein that is essential for growth on methanol. Yeast, 1998; 14: 759-771. | |
| |
17. Monastyrska I., Kiel J.A.K.W., Krikken A. M. et al. The Hansenula polymorpha ATG25 gene encodes a novel coiled-coil protein that is required for macropexophagy. Autophagy, 2005; 1: 92-100. | |
| |
18. Mukaiyama H., Oku M., Baba M. et al. Paz2 and 13 other PAZ gene products regulate vacuolar engulfment of peroxisomes during micropexophagy. Genes Cells, 2002; 7: 75-90. | |
| |
19. Nazarko T., Polupanov A., Manjithaya R. R. et al. The requirement of sterol glucoside for pexophagy in yeast is dependent on the species and nature of peroxisome inducers. Mol. Biol Cell, 2007; 18: 106-118. | |
| |
20. Nazarko V.Y., Nazarko T. Y., Farré J.-C. et al. Atg35, a micropexophagy-specific protein that regulates micropexophagic apparatus formation in Pichia pastoris. Autophagy, 2011; 7(4): (in press). | |
| |
21. Noda T., Suzuki K., Ohsumi Y. Yeast autophagosomes: de novo formation of a membrane structure. Trends Cell Biol, 2002; 12: 231-235. | |
| |
22. Oku M., Warnecke D., Noda T. et al. Peroxisome degradation requires catalytically active sterol glucosyltransferase with a GRAM domain. EMBO J, 2003; 22: 3231-3241. | |
| |
23. Sakaki T., Zahringer U., Warnecke D.C. et al. Sterol glycosides and cerebrosides accumulate in Pichia pastoris, Rhynchosporium secalis and other fungi under normal conditions or under heat shock and ethanol stress. Yeast, 2001; 18: 679-695. | |
| |
24. Sambrook J., Fritsh E.F., Maniatis T. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1989. 356. | |
| |
25. Stasyk O.V., Nazarko T.Y., Stasyk O.G. et al. Sterol glucosyltransferases have different functional roles in Pichia pastoris and Yarrowia lipolytica. Cell Biol. Int, 2003; 27: 947-952. | |
| |
26. Stasyk O.V., Stasyk O.G., Mathewson R.D. et al. Atg28, a novel coiled-coil protein involved in autophagic degradation of peroxisomes in the methylotrophic yeast Pichia pastoris. Autophagy, 2006; 2: 30-38. | |
| |
27. Stasyk O.V., Nazarko T.Y., Sibirny A.A. Methods of plate pexophagy monitoring and positive selection of transformants for ATG gene cloning in yeasts. Methods Enzymology, 2008; 451: 229-39. | |
| |
28. Warnecke D., Erdmann R., Fahl A. et al. Cloning and functional expression of UGT genes encoding sterol glucosyltransferases from Saccharomyces cerevisiae, Candida albicans, Pichia pastoris, and Dictyostelium discoideum. J. Biol. Chem, 1999; 274: 13048-13059. | |
| |
29. Waterham H.R., Titorenko V.I., Haima P. et al. The Hansenula polymorpha PER1 gene is essential for peroxisome biogenesis and encodes a peroxisomal matrix protein with both carboxy and amino-terminal targeting signals. J. Cell Biol, 1994; 127: 737-749. | |
| |
30. Yamashita S., Oku M., Wasada Y. et al. PI4P-signaling pathway for the synthesis of a nascent membrane structure in selective autophagy. J. Cell Biol, 2006; 173: 709-717. | |
| |
31. Yan M., Rayapuram N., Subramani S. The control of peroxisome number and size during division and proliferation. Curr. Opin. Cell Biol, 2005; 17: 376-383. |
Refbacks
- There are currently no refbacks.
Copyright (c) 2011 Studia biologica
This work is licensed under a Creative Commons Attribution 4.0 International License.