SELECTIVE DEGRADATION OF PEROXISOMES IN THE YEAST HANSENULA POLYMORPHA REQUIRES STEROLGLUCOSYLTRANSFERASE Atg26

O. G. Stasyk, O. V. Stasyk


DOI: http://dx.doi.org/10.30970/sbi.0502.149

Abstract


UDP-glucose:sterol glucosyltransferase (EC 2.4.1.173) catalyses the biosynthesis of ergosterol glucoside, a minor membrane lipid present in yeasts and plants. The sterol glucosyltransferases from different yeast species, including the methylotrophic yeast Pichia pastoris, display narrow substrate specificity with respect to both activated sugar and glycosyl acceptor. We isolated the mutant of the methanol-utilizing yeast Hansenula polymorpha defective in the ATG26 gene (encoding sterol glucosyltransferase) and analysed its phenotype. Similarly to P. pastoris product of the H. polymorpha ATG26 gene was required for pexophagy, the process of selective autophagic peroxisome degradation in vacuoles. Thus, sterol glucosyltransferases in different species of methylotrophic yeasts have a similar function in pexophagic process probably related to peculiarities of peroxisome morphogenesis and regulation of their homeostasis in these yeasts.


Keywords


methylotrophic yeasts, Hansenula polymorpha, peroxisomes, pexophagy, sterol glucosyltransferase

References


1. Bellu A. R., Kiel J. A. Selective degradation of peroxisomes in yeasts. Microsc. Res. Tech, 2003; 61: 161-170.
https://doi.org/10.1002/jemt.10325
PMid:12740822

2. Cao Y., Klionsky D.J. Atg26 is not involved in autophagy-related pathways in Saccharomyces cerevisiae. Autophagy, 2007; 3: 17-20.
https://doi.org/10.4161/auto.3371
PMid:17012830

3. Doerks T., Strauss M., Brendel M., Bork P. GRAM, a novel domain in glucosyltransferases, myotubularins and other putative membrane-associated proteins. Trends Biochem. Sci, 2000; 25(10): 483-485.
https://doi.org/10.1016/S0968-0004(00)01664-9

4. Dunn W. A. Jr., Cregg J. M., Kiel J.A.K.W. et al. Pexophagy: the selective autophagy of peroxisomes. Autophagy, 2005; 1: 75-83.
https://doi.org/10.4161/auto.1.2.1737
PMid:16874024

5. Faber K.N., Haima P., Harder W. et al. Highly-efficient electrotransformation of the yeast Hansenula polymorpha. Curr Genet, 1994; 25: 305-310.
https://doi.org/10.1007/BF00351482
PMid:8082173

6. Farré J.C., Subramani S. Peroxisome turnover by micropexophagy: an autophagy-related process. Trends Cell Biol, 2004; 14: 515-523.
https://doi.org/10.1016/j.tcb.2004.07.014
PMid:15350980

7. Gleeson M.A., Sudbery P.E. Genetic analysis in the methylotrophic yeast Hansenula polymorpha. Yeast, 1988; 4: 293-303.
https://doi.org/10.1002/yea.320040407

8. Heese-Peck A., Pichler H., Zanolari B. et al. Multiple functions of sterols in yeast endocytosis. Mol. Biol. Cell, 2002; 13(8): 2664-2680.
https://doi.org/10.1091/mbc.e02-04-0186
PMid:12181337 PMCid:PMC117933

9. Iwata J., Ezaki J., Komatsu M. et al. Excess peroxisomes are degraded by autophagic machinery in mammals. J. Biol. Chem, 2006; 17: 4035-4041.
https://doi.org/10.1074/jbc.M512283200
PMid:16332691

10. Kawamata T., Kamada Y., Suzuki K. et al. Characterization of a novel autophagy-specific gene, ATG29. Biochem. Biophys. Res, 2005; 30: 1884-1889.
https://doi.org/10.1016/j.bbrc.2005.10.163
PMid:16289106

11. Kiel J.A., Komduur J. A., van der Klei I.J., Veenhuis M. Macropexophagy in Hansenula polymorpha: facts and views. FEBS. Lett, 2003; 14: 1-6.
https://doi.org/10.1016/S0014-5793(03)00794-4

12. Kim J., Kamada Y., Stromhaug P. E. et al. Cvt9/Gsa9 functions in sequestering selective cytosolic cargo destined for the vacuole. J. Cell Biol, 2001; 16: 381-396.
https://doi.org/10.1083/jcb.153.2.381
PMid:11309418

13. Klionsky D.J., Cregg J.M., Dunn W.A. et al. A unified nomenclature for yeast autophagy-related genes. Dev. Cell, 2003; 5: 539-545.
https://doi.org/10.1016/S1534-5807(03)00296-X

14. Komduur J.A. Molecular aspects of peroxisome degradation in Hansenula polymorpha. Haren, The Netherlands: University of Groningen, 2004.

15. Lemmon M.A., Ferguson K.M. Signal-dependent membrane targeting by pleckstrin homology (PH) domains. Biochem. J, 2000; 350(1): 1-18.
https://doi.org/10.1042/bj3500001
PMid:10926821 PMCid:PMC1221219

16. Luers G.H., Advani R., Wenzel T., Subramani S. The Pichia pastoris dihydroxyacetone kinase is a PTS1-containing, but cytosolic, protein that is essential for growth on methanol. Yeast, 1998; 14: 759-771.
https://doi.org/10.1002/(SICI)1097-0061(19980615)14:8<759::AID-YEA275>3.0.CO;2-A

17. Monastyrska I., Kiel J.A.K.W., Krikken A. M. et al. The Hansenula polymorpha ATG25 gene encodes a novel coiled-coil protein that is required for macropexophagy. Autophagy, 2005; 1: 92-100.
https://doi.org/10.4161/auto.1.2.1832
PMid:16874036

18. Mukaiyama H., Oku M., Baba M. et al. Paz2 and 13 other PAZ gene products regulate vacuolar engulfment of peroxisomes during micropexophagy. Genes Cells, 2002; 7: 75-90.
https://doi.org/10.1046/j.1356-9597.2001.00499.x
PMid:11856375

19. Nazarko T., Polupanov A., Manjithaya R. R. et al. The requirement of sterol glucoside for pexophagy in yeast is dependent on the species and nature of peroxisome inducers. Mol. Biol Cell, 2007; 18: 106-118.
https://doi.org/10.1091/mbc.e06-06-0554
PMid:17079731 PMCid:PMC1751328

20. Nazarko V.Y., Nazarko T. Y., Farré J.-C. et al. Atg35, a micropexophagy-specific protein that regulates micropexophagic apparatus formation in Pichia pastoris. Autophagy, 2011; 7(4): (in press).
https://doi.org/10.4161/auto.7.4.14369
PMid:21169734 PMCid:PMC3127218

21. Noda T., Suzuki K., Ohsumi Y. Yeast autophagosomes: de novo formation of a membrane structure. Trends Cell Biol, 2002; 12: 231-235.
https://doi.org/10.1016/S0962-8924(02)02278-X

22. Oku M., Warnecke D., Noda T. et al. Peroxisome degradation requires catalytically active sterol glucosyltransferase with a GRAM domain. EMBO J, 2003; 22: 3231-3241.
https://doi.org/10.1093/emboj/cdg331
PMid:12839986 PMCid:PMC165655

23. Sakaki T., Zahringer U., Warnecke D.C. et al. Sterol glycosides and cerebrosides accumulate in Pichia pastoris, Rhynchosporium secalis and other fungi under normal conditions or under heat shock and ethanol stress. Yeast, 2001; 18: 679-695.
https://doi.org/10.1002/yea.720
PMid:11378896

24. Sambrook J., Fritsh E.F., Maniatis T. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1989. 356.

25. Stasyk O.V., Nazarko T.Y., Stasyk O.G. et al. Sterol glucosyltransferases have different functional roles in Pichia pastoris and Yarrowia lipolytica. Cell Biol. Int, 2003; 27: 947-952.
https://doi.org/10.1016/j.cellbi.2003.08.004
PMid:14585290

26. Stasyk O.V., Stasyk O.G., Mathewson R.D. et al. Atg28, a novel coiled-coil protein involved in autophagic degradation of peroxisomes in the methylotrophic yeast Pichia pastoris. Autophagy, 2006; 2: 30-38.
https://doi.org/10.4161/auto.2226
PMid:16874081

27. Stasyk O.V., Nazarko T.Y., Sibirny A.A. Methods of plate pexophagy monitoring and positive selection of transformants for ATG gene cloning in yeasts. Methods Enzymology, 2008; 451: 229-39.
https://doi.org/10.1016/S0076-6879(08)03216-3

28. Warnecke D., Erdmann R., Fahl A. et al. Cloning and functional expression of UGT genes encoding sterol glucosyltransferases from Saccharomyces cerevisiae, Candida albicans, Pichia pastoris, and Dictyostelium discoideum. J. Biol. Chem, 1999; 274: 13048-13059.
https://doi.org/10.1074/jbc.274.19.13048
PMid:10224056

29. Waterham H.R., Titorenko V.I., Haima P. et al. The Hansenula polymorpha PER1 gene is essential for peroxisome biogenesis and encodes a peroxisomal matrix protein with both carboxy and amino-terminal targeting signals. J. Cell Biol, 1994; 127: 737-749.
https://doi.org/10.1083/jcb.127.3.737
PMid:7962056

30. Yamashita S., Oku M., Wasada Y. et al. PI4P-signaling pathway for the synthesis of a nascent membrane structure in selective autophagy. J. Cell Biol, 2006; 173: 709-717.
https://doi.org/10.1083/jcb.200512142
PMid:16754956 PMCid:PMC2063888

31. Yan M., Rayapuram N., Subramani S. The control of peroxisome number and size during division and proliferation. Curr. Opin. Cell Biol, 2005; 17: 376-383.
https://doi.org/10.1016/j.ceb.2005.06.003
PMid:15978793


Refbacks

  • There are currently no refbacks.


Copyright (c) 2011 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.