FUNCTIONAL STATUS OF CHLOROPHYLL-PROTEIN COMPLEXES IN LEAVES OF PLANTS INFLUENCED BY CADMIUM IONS AND SALICYLATE

I. V. Boiko, M. S. Kobyletska, O. I. Terek


DOI: http://dx.doi.org/10.30970/sbi.0501.132

Abstract


Changes in status of chlorophyll-protein complexes of wheat and maize plants influenced by cadmium stress and different treatments with salicylate were studied. Observed modifications of pigment-protein complexes indicate adaptive effect of salicylic acid on cadmium-stressed plants. Impact of salicylic acid is species-specific and depends on stress sensitivity of plant. Features of salicylate and cadmium influence towards chlorophyll a and b, and possible mechanisms of salicylate role in regulation of status of chlorophyll-protein complexes under stressful conditions, are considered.


Keywords


salicylic acid, cadmium, photosynthesis, chlorophyll-protein comple­xes, adaptation, stress, Triticum aestivum L., Zea mays L.

References


1. Бессонова В.П. Влияние тяжелых металлов на фотосинтез растений. Днепропетровск: ДнГАУ, 2006. 208 с.

2. Бойко І.В., Кобилецька М.С., Терек О.І. Особливості впливу саліцилату на ростові параметри та вміст хлорофілів у рослин пшениці за дії кадмію хлориду. В кн.: Наукові, прикладні та освітні аспекти фізіології, генетики, біотехнології рослин і мікроорганізмів. Матер. ХІ конф. мол. вч. м. Київ, 22-24 червня 2010 р. Київ, 2010: 25-27.

3. Бойко І.В., Кобилецька М.С. Стан пігментної системи рослин Zea mays L. за дії хлориду кадмію та саліцилової кислоти. В кн: Біологія: від молекули до біосфери. Матер. V міжнар. конф. мол. науковц. м. Харків, 22-25 листопада 2010 р. Харків, 2010: 254-256.

4. Дымова О.В., Гриб И., Головко Т.К. и др. Состояние пигментного аппарата зимне- и летнезеленых листьев теневыносливого растения Ajuga reptans. Физиология растений, 2010; 57(6): 809-818.

5. Кочубей С.М. Организация фотосинтетического аппарата высших растений. Киев: Альтерпрес, 2001. 204 с.

6. Мусієнко М.М., Паршикова Т.В., Славний П.С. Спектрофотометричні методи в практиці фізіології, біохімії та екології рослин. Київ: Фітосоціоцентр, 2001. 200 с.

7. Починок Х.Н. Методы биохимического анализа растений. Киев: Наукова думка, 1976. 336 с.

8. Терек О.І. Механізми адаптації та стійкості рослин до несприятливих факторів довкілля. Журнал агробіології та екології, 2004; 1(1-2): 41-56.

9. Amthor J.S. From sunlight to phytomass: on the potential efficiency of converting solar radiation to phyto-energy. New Phytol, 2010; 188: 939-959.
https://doi.org/10.1111/j.1469-8137.2010.03505.x
PMid:20977480

10. Bennett J. Regulation of photosynthesis by reversible phosphorylation of the light-harvesting chlorophyll a/b protein. Biochem J, 1983; 212: 1-13.
https://doi.org/10.1042/bj2120001
PMid:6347190 PMCid:PMC1152003

11. Besford R.T., Richardson C.M., Campos J.L. et al. Effect of polyamines on stabilization of molecular complexes in thylakoid membranes of osmotically stressed oat leaves. Planta, 1993; 189: 201-206.
https://doi.org/10.1007/BF00195077

12. Bradburne J.A., Kasperbauer M.J., Mathis J.M. Reflected far-red light effects on chlorophyll and light-harvesting chlorophyll protein (LHC-I) contents under field conditions. Plant Physiol, 1989; 91: 800-803.
https://doi.org/10.1104/pp.91.3.800
PMid:16667139 PMCid:PMC1062077

13. Burke J.J., Oliver M.J. Optimal thermal environments for plant metabolic processes (Cucumis sativus L.). Plant Physiol, 1993; 102: 295-302.
https://doi.org/10.1104/pp.102.1.295
PMid:12231821 PMCid:PMC158775

14. Burkey K.O. Chlorophyll-protein complex composition during chloroplast development: A species comparison. Photosynth. Res, 1987; 11: 211-224.
https://doi.org/10.1007/BF00055061
PMid:24435537

15. Burnap R.L., Troyan T., Sherman L.A. The highly abundant chlorophyll-protein complex of iron-deficient Synechococcus sp. PCC7942 (CP43') is encoded by the isiA gene. Plant Physiol, 1993; 103: 893-902.
https://doi.org/10.1104/pp.103.3.893
PMid:8022940 PMCid:PMC159061

16. Garstka M., Venema J.H., Rumak I. et al. Contrasting effect of dark-chilling on chloroplast structure and arrangement of chlorophyll-protein complexes in pea and tomato: plants with a different susceptibility to non-freezing temperature. Planta, 2007; 226: 1165-1181.
https://doi.org/10.1007/s00425-007-0562-7
PMid:17569078

17. Hayat Q., Hayat S., Irfan M. et al. Effect of exogenous salicylic acid under changing environment: A review. Environ. Exp. Bot, 2010; 68: 14-25.
https://doi.org/10.1016/j.envexpbot.2009.08.005

18. Hoober J.K., Eggink L.L., Chen M. Chlorophylls, ligands and assembly of light-harvesting complexes in chloroplasts. Photosynth. Res, 2007; 94: 387-400.
https://doi.org/10.1007/s11120-007-9181-1
PMid:17505910 PMCid:PMC2117338

19. Krantev A., Yordanova R., Janda T. et al. Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J. Plant. Physiol, 2008; 165: 920-931.
https://doi.org/10.1016/j.jplph.2006.11.014
PMid:17913285

20. Krupa Z. The action of lipases on chloroplast membranes. III. The effect of lipid hydrolysis on chlorophyll-protein complexes in thylakoid membranes. Photosynth. Res, 1984; 5: 177-184.
https://doi.org/10.1007/BF00028530
PMid:24458605

21. Meyer S., de Kouchkovsky Y. Electron transport, Photosystem-2 reaction centers and chlorophyll-protein complexes of thylakoids of drought resistant and sensitive Lupin plants. Photosynth. Res, 1993; 37: 49-60.
https://doi.org/10.1007/BF02185438
PMid:24317653

22. Nechushtai R., Cohen Y., Chitnis P.R. Assembly of the chlorophyll-protein complexes. Photosynth. Res, 1995; 44: 165-181.
https://doi.org/10.1007/BF00018307
PMid:24307036

23. Pahlsson A.-M.B. Toxicity of heavy metals (Zn, Cu, Cd, Pb) to vascular plants. Water, Air and Soil Pollut, 1989; 47: 287-319.
https://doi.org/10.1007/BF00279329

24. Popova L., Pancheva T., Uzunova A. Salicylic acid: properties, biosynthesis and physiological role. Bulg. J. Plant Physiol, 1997; 23(1-2): 85-93.

25. Sarvari E. Effects of heavy metals on chlorophyll-protein complexes in higher plants: causes and consequences. In: Handbook of Photosynthesis, ed. M. Pessarakli. Boca Raton, FL: CRC Press, 2005; 865-888.
https://doi.org/10.1201/9781420027877.ch45

26. Shi G.R., Cai Q.S., Liu Q.Q. et al. Salicylic acid-mediated alleviation of cadmium toxicity in hemp plants in relation to cadmium uptake, photosynthesis, and antioxidant enzymes. Acta Physiol Plant, 2009; 31: 969-977.
https://doi.org/10.1007/s11738-009-0312-5

27. Siffel P., Braunov Z. Release and aggregation of the light-harvesting complex in intact leaves subjected to strong CO2 deficit. Photosynth. Res, 1999; 61: 217-226.

28. Walters R.G., Horton P. Structural and functional heterogeneity in the major light-harvesting complexes of higher plants. Photosynth. Res, 1999; 61: 77-89.
https://doi.org/10.1023/A:1006243005318

29. Yamauchi Y., Sugimoto Y. Effect of protein modification by malondialdehyde on the interaction between the oxygen-evolving complex 33 kDa protein and photosystem II core proteins. Planta, 2010; 231: 1077-1088.
https://doi.org/10.1007/s00425-010-1112-2
PMid:20157726


Refbacks

  • There are currently no refbacks.


Copyright (c) 2011 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.