A. A. Halushka, T. B. Peretyatko, S. P. Gudz



Influence of hydrogen sulfide on the cell wall proteins composition of Saccharomyces cerevisiae yeasts is investigated. H2S considerably destroys the outer mannoprotein layer of the cell wall. The content of most of the covalently bound cell wall proteins, particularly, proteins with molecular weights 17, 24, 32, 37 and 53 kDa, is considerably decreased during yeasts’ cultivation with 10 mM of hydrogen sulfide for one day. The content of reducing sugars in the medium increased at the presence of hydrogen sulfide. At H2S concentration 20 and 30 mM none of the covalently bound cell wall proteins were observed. Among the non-covalently bound cell wall proteins of S. cerevisiae, the increase of proteins with molecular weights 110, 64, 51, 49, 26, 25, 23 and 16 kDa content and the decrease of proteins with molecular weights 42, 40, 29 and 27 kDa content is observed under the influence of 10 mM of hydrogen sulfide during one day. Under the short-term (1 hour) influence of H2S at different concentrations the increase of proteins with molecular weights 98, 94, 84, 78, 71, 68, 61, 42, 40 and 32 kDa content and the decrease of protein with molecular weight 49 kDa content was observed.


Saccharomyces cerevisiae, hydrogen sulfide, cell wall


1. Галушка А., Гудзь С. Вплив гідроген сульфіду на поглинання кисню і активність ізоцитратдегідрогенази й алкогольдегідрогенази дріжджів Saccharomyces cerevisiae та Pichia guilliermondii. Вісник Львів. ун-ту. Сер. біол, 2009; 51: 199-205.

2. Галушка А.А., Гудзь С.П. Структурно-функціональні зміни в клітинах мікроорганізмів при дії гідроген сульфіду. Біологічні студії / Studia Biologica, 2009; 3(2): 141-148.

3. Галушка А.А., Горішний М.Б., Кулачковський О.Р. та ін. Вплив гідроген сульфіду на фотосинтезувальний апарат бактерій Chlorobium limicola IMB K-8. Мікробіологія і біотехнологія, 2012; 1: 39-46.

4. Гудзь С.П., Билинская И.С., Кузнецова Р.А. и др. Методические указания к лабораторным работам по большому практикуму (Цитология и биохимия дрожжей) для студентов биологического факультета. Львов: ЛГУ, 1990. 36 с.

5. Калебина Т.С., Кулаев И.С. Роль белков в формировании молекулярной структуры клеточной стенки дрожей. Успехи биологической химии, 2001; 41: 105-130.

6. Лакин Г.Ф. Биометрия. Москва: Высшая школа, 1990. 352 с.

7. Перетятко Т., Гнатуш С., Гудзь С. Сульфатвідновлювальні бактерії Яворівського сіркового родовища. Мікробіол. журнал, 2006; 68(5): 84-91.

8. Сибірна Н.О., Гончар М.В., Бродяк І.В. та ін. Хімія білка / За ред. Н.О. Сибірної. Львів: Вид. центр Львів. ун-ту, 2010. 394 с.

9. Attene-Ramos M.S., Wagner E.D., Plewa M.J. et al. Evidence that hydrogen sulfide is a genotoxic agent. Mol. Cancer Res, 2006; 4(1): 9-14.

10. Burkcholder P. Influence of some environmental factors upon the production of riboflavin by yeasts. Arch. Biochem, 1943; 1(1): 121-130.

11. Caro L.H.P., Smits G.J., Van Egmond P. et al. Transcription of multiple cell wall protein-encoding genes in Saccharomyees cerevisiae is differentially regulated during the cell cycle. FEMS Microbiol. Lett, 1998; 161: 345-349.

12. Chaffin W.J., Lopez-Ribot J.L., Casanova M. et al. Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiol. Mol. Biol. Rev, 1998; 62: 130-180.

13. Cid V.J., Duran A., del Rey F. et al. Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae. Microbiol. Reviews, 1995; 59(3): 345-386.

14. Cohen Y., Jorgensen B.B., Revsbech N.P. et al. Adaptation to hydrogen sulfide of oxygenic and anoxygenic photosynthesis among cyanobacteria. Appl. Env. Microbiol, 1986; 51(2): 398-407.

15. Espie G.S., Miller A.G., Canvin D.T. Selective and reversible inhibition of active CO2 transport by hydrogen sulfide in a cyanobacterium. Plant Physiol., 1989; 91: 387-394.
PMid:16667030 PMCid:PMC1062004

16. Huycke M.M., Gaskins H.R. Commensal bacteria, redox stress, and colorectal cancer: mechanisms and models. Experimental Biology and Medicine, 2004; 229: 586-597.

17. Hydrogen sulfide: human health aspects [Electronic resource] / World health organization: Cicads 53. Geneva, 2003. Online article available at:

18. Jose C., Klein N., Wyss S. et al. Arthrobacter lyticase as an effector molecule for paratransgenic control of Chagas disease [Electronic resource]. ASTMH 59th annual meeting. Online article available at: 2625&sKey=5e0da339-7c75-4b05-98ba-e029c44df5f2&cKey=ccf2812a-3686-4d03-8b52-251663d10e4e&mKey=8ccce7ea-36cd-4b75-8b34-e799dc76f535#

19. Klis F.M. Review: cell wall assembly in yeast. Yeast, 1994; 10: 851-869.

20. Klis F.M., Boorsma A., De Groot P.W.J. Cell wall construction in Saccharomyces cerevisiae. Yeast, 2006; 23: 185-202.

21. Kuster E., Dorusch F., Altenburger R. Effects of hydrogen sulfide to Vibrio fischeri, Scenedesmus vacuolatus, and Daphnia Magna. Environ. Toxicol. Chem, 2005; 24(10): 2621-2629.

22. Lesage G., Bussey H. Cell wall assembly in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev, 2006; 70(2): 317-343.
PMid:16760306 PMCid:PMC1489534

23. Lloyd K.G., Edgcomb V.P., Molyneaux S.J. et al. Effects of dissolved sulfide, pH, and temperature on growth and survival of marine hyperthermophilic Archaea. Appl. Env. Microbiol, 2005; 71(10): 6383-6387.
PMid:16204562 PMCid:PMC1265996

24. Miller S.R., Bebout B.M. Variation in sulfide tolerance of photosystem II in phylogenetically diverse cyanobacteria from sulfidic habitats. Appl. Env. Microbiol, 2004; 70(2): 736-744.
PMid:14766549 PMCid:PMC348820

25. Osterman L.A. Methods for proteins and nucleic acids investigations: electrophoresis and ultracentrifugation (practical recommendations). Moscow: Nauka, 1981. 288 p.

26. Ram A.F.J., Van Den Ende H., Klis F.M. Green fluorescent protein-cell wall fusion proteins are covalently incorporated into the cell wall of Saccharomyces cerevisiae. FEMS Microbiol. Lett, 1998; 162: 249-255.

27. Reynolds E.S. The use of lead citrate at high pH as an electronopaque stain in electron microscopy. J. Cell. Biol, 1963; 17: 208-212.
PMid:13986422 PMCid:PMC2106263

28. Rintala E., Weibe M. G., Tamminen A. et al. Transcription of hexose transporters of Saccharomyces cerevisiae is affected by change in oxygen provision [Electronic resource]. BMC Microbiology, 2008; 8: 53. Online article available at:
PMid:18373847 PMCid:PMC2324102

29. Schrenk M.O., Kelley D.S., Delaney J.R et al. Incidence and diversity of microorganisms within the walls of an active deep-sea sulfide chimney. Appl. Environ. Microbiol, 2003; 69: 3580-3592.
PMid:12788766 PMCid:PMC161516

30. Veses V., Casanova M., Murgui A. et al. ABG1, a Novel and Essential Candida albicans Gene Encoding a Vacuolar Protein Involved in Cytokinesis and Hyphal Branching. Eukaryotic cell. 2005; 4(6): 1088-1101.
PMid:15947201 PMCid:PMC1151987

31. Zupan J., Mavri J., Raspor P. Quantitative cell wall protein profiling of invasive and non-invasive Saccharomyces cerevisiae strains. J. Microbiol. Methods, 2009; 79: 260-265


  • There are currently no refbacks.

Copyright (c) 2012 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.