EFFECTS OF SEED PRIMING WITH GROWTH REGULATOR BIOLAN ON SALT TOLERANCE OF PISUM SATIVUM L.

M. V. Dmytruk, N. V. Vasyliv, I. V. Derkach, I. M. Mykiyevych, N. D. Romanyuk


DOI: http://dx.doi.org/10.30970/sbi.1003.497

Abstract


Growth regulator Biolan (“Agrobiotech”, Kyiv) positively influenced physiological and biochemical responses of Pisum sativum L. (var. Alpha) in laboratory experiments, carried out in the presence of 0 (control), 2 and 4% NaCl. NaCl delayed the time-course of water uptake by germinating seeds, growth and emergence of an embryonic axes, inhibited germination activity, plants early growth (fresh and dry matter accumulation), chlorophyll a, chlorophyll b and carotenoids contents. Na+, Ca2+ and K+ homeostasis under the 2% NaCl impact disturbed, Ca content and K/Na ratio dramatically decreased. Biolan applied for seeds priming in dilution 1:105 (6 h), promoted water uptake by seeds and germination, it increaced Chl a/b ratio in leaves either with or without NaCl. Seed priming with Biolan lead to partial restoring K/Na ratio and slight alleviation the total salt inhibitory effects; it seems to be a reliable approach to increase salt tolerance in a field conditions.


Keywords


Pisum sativum L., plant growth regulator, seeds priming, Biolan, NaCl, salt tolerance

Full Text:

PDF

References


1. Amira M.S., Qados A. Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.) J. of the Saudi Soc. of Agricult. Sci, 2011; 10(1): 7-15.
https://doi.org/10.1016/j.jssas.2010.06.002

2. Amuthavalli P, Sivasankaramoorthy S. Effect of Salt Stress on the Growth and Photosynthetic Pigments of Pigeon Pea (Cajanus Cajan). J. App. Pharm. Sci, 2012; 2(10): 131-133.
https://doi.org/10.7324/JAPS.2012.21124

3. Anishyn L. А. Effect of bio-stimulators on yield and quality of winter wheat. Novyny Zahystu Roslyn, 1999; 7: 29-30. (In Ukrainian)

4. Ashraf M., Harris P.J.C. Potential biochemical indicators of salinity tolerance in plants. Plant Science, 2004; 166(1): 3-16.
https://doi.org/10.1016/j.plantsci.2003.10.024

5. Ashraf M.A., Ashraf M. Salt-induced variation in some potential physiological attribute of two genetically diverse spring wheat (Triticum aestivum L.) cultivars: photosynthesis and photosystem II efficiency. Pakistan Journal of Botany, 2012; 44: 53-64.

6. Barber K.E. History of vegetation. In: Chapman S.B. (Ed.) Methods in Plant Ecology. Oxf.: Blackwell Sci. Publ., 1976: 5-83.

7. Bilyk G.I. Flora of salinized soils of Ukraine, development, usage and improvement. Kyiv: UAS, 1963. 300 p. (In Ukrainian)

8. Biologically active substances in plant production (Ed.) Grytsayenko Z.M., Ponomarenko S.P., Karpenko V.P. et al. Kyiv: Nichlava, 2008. 352 p. (In Ukrainian)

9. Bohnert H.J., Nelson D.E. Yensen R.G. Adaptations to environmental stress. Plant Cell, 1995; 7: 1099-1111.
https://doi.org/10.2307/3870060

10. Box E.O. Plant functional types and climate at the Global Scale. J. Veg. Sci, 1996; 7: 309-320.
https://doi.org/10.2307/3236274

11. Carvalho R. F., PiottoI F.A., SchmidtI D. Seed priming with hormones does not alleviate induced oxidative stress in maize seedlings subjected to salt stress. Sci. Agric. (Braz.), 2011; 68(5): 598-602.
https://doi.org/10.1590/S0103-90162011000500014

12. Chakraborty R., Kar R.K. Differential water uptake kinetics in axes and cotyledons during seed germination of Vigna radiata under chilling temperature and cycloheximide treatment. Braz. J. Plant Physiol, 2008; 20(4): 277-284.
https://doi.org/10.1590/S1677-04202008000400003

13. Chizhykova O.A., Palladiana T.O. Аctivity of key enzymes of proline synthesis and destruction in corn seedlings under salinity environment and synthetic growth regulators impact. Reports of the NAS of Ukraine, 2007; 3: 191-195. (In Ukrainian)

14. Deinlein U., Stephan A. B., Horie T. et al. Plant salt-tolerance mechanisms Trends in Plant Science, 2014; 19(6): 371-379.
https://doi.org/10.1016/j.tplants.2014.02.001
PMid:24630845 PMCid:PMC4041829

15. Derkach I.V., Romanyuk N.D. Effect of NaCl salinity on growth and pigment system of Fagopyrum esculentum Moench. and Vicia faba L. plants. J. of Karazin Kharkiv Nat. Univ., Ser. Biol, 2015; 25: 308-319. (In Ukrainian)

16. Drop B., Webber-Birungi M., Yadav S.K.N. et al. Light-harvesting complex II and its supramolecular organization in Chlamydomonas reinhardtii. Biochimica et Biophysica Acta, 2014; 1837(1): 63-72.
https://doi.org/10.1016/j.bbabio.2013.07.012
PMid:23933017

17. Ehab A. I. Seed priming to alleviate salinity stress in germinating seeds. J. Plant Physiol, 2016; 192(15): 38-46.
https://doi.org/10.1016/j.jplph.2015.12.011
PMid:26812088

18. El-Naim A.M., Mohammed K.E., Enab I.A. et al. Impact of salinity on seed germination and early seedling growth of three sorghum (Sorghum bicolor L.) cultivars. Sci. Technol, 2012; 2(2): 16-20.
https://doi.org/10.5923/j.scit.20120202.03

19. Ermakov А. I. Меthods of Biochemical Analysis of Plants. L.: Kolos, 1972; 456 p.

20. FAO 2015 Social protection and agriculture: breaking the cycle of rural poverty: The State of Food and Agriculture, Rome 13, October, 2015, 150 p. (http://www.fao.org/3/a-i4910e.pdf)
https://doi.org/10.18356/79dbc75b-en

21. Ghezal N., Rinez I., Sbai H. et al. Improvement of Pisum sativum salt stress tolerance by bio-priming their seeds using Typha angustifolia leaves aqueous extract. South Afr. J. of Botany, 2016; 105: 240-250.
https://doi.org/10.1016/j.sajb.2016.04.006

22. Heidari M., Sarani S. Growth, biochemical components and ion content of Chamomile (M. chamomilla L.) under salinity stress and iron deficiency. J. of the Saudi Soc. of Agricult. Sci, 2012; 11(1): 37-42.
https://doi.org/10.1016/j.jssas.2011.05.002

23. Isayenkov S.V. Physiological and molecular aspects of salt stress in plants. Cytol. Genet, 2012; 46(5): 302-318.
https://doi.org/10.3103/S0095452712050040

24. Kabuzenko S. M. Zhyzhyna M.N., Ponomarenko S.P. et al. Synthetic growth regulators ivin and BAP influence on water exchange values in corn and barely germs in salt soil. Physiol. and Biochem. of Cult. Plants, 2009; 41(2): 146-153. (In Ukrainian)

25. Kalinina N.O., Kabuzenko S.M. Method for corn biomass increasing on salinized soils. Patent # 36600, 16.04.2001 Ukrainian Patents Database http://uapatents.com/2-36600-sposib-pidvishhennya-nakopichennya-biomasi-kukurudzi-na-zasolenikh-gruntakh.html

26. Kamel M., Hammad S. Is the soil K/Na ratio the first defense line against salinity? European J. of Biological Research, 2015; 5: 42-51.

27. Karajol K., Naik G.R. Seed germination rate as a phenotypical marker for the selectionof NaCl tolerant cultivars in pigeon pea (Cajanus cajan L.; MILLSP.). World J. Sci. Technol, 2011; 1(2): 1-8.

28. Kaya M.D., Okçu G., Atak M. et al. Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). Europ. J. Agronomy, 2006; 24: 291-295.
https://doi.org/10.1016/j.eja.2005.08.001

29. Kolesnikov M.O. Tocopherol influence on pea (Pisum sativum L.) germination and formation of its biological yields. Agrobiology, 2013; 11(104): 115-119.

30. Leonforte A., Forster J., Redden R. et al. Sources of high tolerance to salinity in pea (Pisum sativum L.) Euphytica, 2013; 189(2): 203-216.
https://doi.org/10.1007/s10681-012-0771-4

31. Lutsenko E.K., Marushko Ye.A., Kononenko T.G. Influence of fusicoccin on early growth of sorgo under high NaCl concentrations. Plant Physiology, 2005; 52(3): 378-383. (In Russian)
https://doi.org/10.1007/s11183-005-0050-5

32. Mani F. Effect of salt stress on physiological attributes of pea (Pisum sativum). IJASR, 2015; 5(1): 29-42.

33. Mazher A., El-Quesni E., Farahat M.M. Responses of ornamental and woody trees to salinity. World J. Agric. Sci, 2007; 3(3): 386-395.

34. Meloni D.A., Oliva A.A., Martinez Z.A. et al. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ. Exp.Bot, 2003; 49: 69-76.
https://doi.org/10.1016/S0098-8472(02)00058-8

35. Merkushyna A.S. Physiologically-biochemical basis of gibberellins influence on pea plants and phytophags. Kyiv: Silgosposvita, 1994. 57-60 p. (In Ukrainian)

36. Munns R. Comparative Physiology of Salt and Water Stress. Plant Cell Environ, 2002; 25(2): 239-250.
https://doi.org/10.1046/j.0016-8025.2001.00808.x
PMid:11841667

37. Munns R., Tester M. Mechanisms of Salinity Tolerance. Ann. Rev. Plant. Biol, 2008; 59: 651-681.
https://doi.org/10.1146/annurev.arplant.59.032607.092911
PMid:18444910

38. Musienko М.М., Parshykova Т.V., Slavnyy P.S. Spectrophoto-metrical methods in plant physiology and ecology. Kyiv: Phytosociocenter, 2001. 200 p.

39. Noreen S., Ashraf M., Hussain M. Exogenous application of salicylic acid enhances antioxidative capacity in salt stressed sunflower. Pak. J. Bot, 2009; 41(1): 473-479.

40. Parida .A.K; Das.A.B, Mittra.B. Effects of salt on growth ion accumulationphotosynthesis and leaf anatomy of the mangrove Brugulera paviflora. Trees: Structure and Function, 2004; 18: 167-174.
https://doi.org/10.1007/s00468-003-0293-8

41. Patanè C., Cavallaro V., Cosentino S.L. Germination and radicle growth in unprimed and primed seeds of sweet sorghum as affected by reduced water potential in NaCl at different temperatures. Industrial Crops and Products, 2009; 30(1): 1-8.
https://doi.org/10.1016/j.indcrop.2008.12.005

42. Pjurko O.Ye., Kazakova S.M. Some aspects of salt of Pryazovja plants. Materials of USB: Kharkiv, 25-27 September, 2001. Kharkiv: B.V., 2001: 319-320. (In Ukrainian)

43. Pjurko O.Ye., Musiyenko M.M., Kazakov Ye.O. et al. Basics of plant salt tolerance and methods of its investigation. Visnyk Zaporizhzhia State Univ. Biology Sci, 2001; 1: 204-208. (In Ukrainian)

44. Plant Biostimulants. Кyiv: Agrobiothech, 2013-2014: 29 p. (In Russian)

45. Ponomarenko S.P. Growth Regulators. Environmental aspects of application. Plant Protection J, 1999; 12: P. 15. (In Ukrainian)

46. Prado F.E., Boero C., Gallardo S. Efect of NaCl on germination, growth and soluble sugars content Chenopodium quinoa Willd. Seeds Bot. Bull. Acad. Sin, 2000; 41: 27-34.

47. Ribchenko Zh. I., Palladina Т.A. The action of adaptogenic preparations on vacuolar proton рumps activity in corn root cells under salt stress conditions. Ukr. Biochem. J, 2012; 84(3): 88-93.

48. Rodriguez-Navarno A. Potassium Transport in Fungi and Plants Biochem. Biophys. Acta, 2000; 1469: 1-30.
https://doi.org/10.1016/S0304-4157(99)00013-1

49. Roy S. J., Negra S., Tester M. Salt resistant crop plants. Current Opinion in Biotechnology, 2014; 26: 115-124.
https://doi.org/10.1016/j.copbio.2013.12.004
PMid:24679267

50. Saida C., Hadjar S., Belgat H. et al. Interactive effects of potassium and sodium on the growth and nodulating capacity of pea (Pisum sativum L.) var: Merveilede Kelvedon under salt stress. Agriculture and Biology J. of North America, 2015; 6(1): 34-46.

51. Salt Stress Signaling Pathways: Specificity and Cross Talk in Book: Managing salinity tolerance in plants: molecular and genomic perspectives. Chapt: Salt stress signalling pathways: specificity and crosstalk., CRC Press, (Ed.): Wani S.H., Hossain M.A., 2015: 51-78.
https://doi.org/10.1201/b19246-5

52. Serrano R., Mulet J.M. A Glimpse of the Mechanism of lon Homeostasis during Salt Stress. J. Exp. Bot, 1999; 50: 1023-1036.
https://doi.org/10.1093/jxb/50.Special_Issue.1023

53. Shabala S, Cuin TA Potassium transport and plant salt tolerance. Physiol. Plant, 2008; 133(4): 651-69.
https://doi.org/10.1111/j.1399-3054.2007.01008.x
PMid:18724408

54. Shevchenko A.O., Anishyn L.A. Reserves of wheat growing. Bio-promoters of new era. Plant Protection J, 1997; 10: 21. (In Ukrainian)

55. Stepien P., Klobus G. Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress. Biol. Plantarum, 2006; 50(4): 610-616.
https://doi.org/10.1007/s10535-006-0096-z

56. Taffouo V.D., Wamba O.F., Yombi E. et al. Growth, yield, water status and ionic distribution response of three bambara groundnut (Vigna subterranean (L.) verdc.) landraces grown under saline condition. Int. J. Bot, 2010; 6(1): 53-58.
https://doi.org/10.3923/ijb.2010.53.58

57. Tavakkoli E., Paull J., Rengasamy P. et al. Comparing genotypic variation in faba bean (Vicia faba L.) in response to salinity in hydroponic and field experiments. Field Crops Research, 2012; 127: 99-108.
https://doi.org/10.1016/j.fcr.2011.10.016

58. Tester N., Davenport R. Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 2003; 91: 1-25.
https://doi.org/10.1093/aob/mcg058
PMid:12646496 PMCid:PMC4242248

59. Tort N., Turkyilmaz B. A physiological investigation on the mechanisms of salinity tolerance in some barley culture forms. J. F. S, 2004; 27: 1-16.

60. Turan M.A., Kalkat V., Taban S. Salinity-induced stomatal resistance, proline, chlorophyll and Ion concentrations of bean. Int. J. Agric. Res, 2007; 2(5): 483-488.
https://doi.org/10.3923/ijar.2007.483.488

61. Tyschenko O.D., Tyschenko A.V.,Chernychenko M.I. Sat tolerance of alfalfa and the ways of its improvement. Irrigated Agricult, 2013; 59: 105-108. (In Ukrainian)

62. Waheed A., Hamid F.S., Gul H. et al. Effect of sowing date in the performance of pea plant (Pisum sativum) under agro climatic condition of Mansehra. Moroccan J. of Chemistry, 2015; 3(4): 713-722.

63. www.agrobiotech.com.ua

64. Zhu J.K. Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Biol, 2003; 6(5): 441-445.
https://doi.org/10.1016/S1369-5266(03)00085-2

65. Zhu J.K., Hasegawa P.M. Molecular Aspects of Osmotic Stress in Plants. Crit. Rev. Plant. Sci, 1997; 16: 253-277.
https://doi.org/10.1080/07352689709701950


Refbacks

  • There are currently no refbacks.


Copyright (c) 2016 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.