INFLUENCE OF SALINITY ON LEGUME PLANTS AND THEIR USE FOR RESTORATION OF SOIL FERTILITY

Lyudmyla Mykhalkiv, Sergii Kots, Ivan Obeziuk


DOI: http://dx.doi.org/10.30970/sbi.1703.733

Abstract


Salinity is one of the biggest harmful stress factors that limit the stability of plants and their productivity, as well as reduce the fertility of soils. Therefore, the research on plant protection mechanisms against high salt concentration in the environment and the search for ways to increase their resistance to this stress factor are relevant today. The presented literature review describes the peculiarities of legume response to salt stress, in particular during the establishment of relationship with nodule bacteria. High concentrations of salt in soil lead to the interruption of some vital processes in legumes and thus cause a significant decrease in both crop quality and harvest size. So, the results of studies which indicate a negative effect of salt stress on growth and development, hormonal status, photosynthesis and carbon assimilation, osmotic processes, maintaining the ion homeostasis and the formation of reproductive organs are given. Special attention is paid to the question of the influence of salinity on the interaction between plants and rhizobia during nodule formation and their further functioning. It is noteworthy that the presence of certain adaptive mechanisms as well as the peculiarities of growth and development of legumes, in particular their capability to form symbiotic nitrogen fixation systems with nodule bacteria, suggest a possibility of using certain species of this family for the remediation of saline soils. The importance of the selection of salt-resistant rhizobia strains and the effectiveness of rhizobia in combination with other beneficial microorganisms for agriculture are noted.


Keywords


legume plants, rhizobia, rhizosphere microorganisms, symbiosis, salinity, salt resistance

References


Abdelrahman, M., Jogaiah, S., Burritt, D. J., & Tran, L. P. (2018). Legume genetic resources and transcriptome dynamics under abiotic stress conditions. Plant, Cell & Environment, 41(9), 1972-1983. doi:10.1111/pce.13123
CrossrefPubMedGoogle Scholar

Abiala, M. A., Abdelrahman, M., Burritt, D. J., & Tran, L. P. (2018). Salt stress tolerance mechanisms and potential applications of legumes for sustainable reclamation of salt-degraded soils. Land Degradation & Development, 29(10), 3812-3822. doi:10.1002/ldr.3095
CrossrefGoogle Scholar

Ahmed, S. (2009). Effect of soil salinity on the yield and yield components of mungbean. Pakistan Journal of Botany, 41(1), 263-268.
Google Scholar

Al Hassan, M., Morosan, M., López-Gresa, M., Prohens, J., Vicente, O., & Boscaiu, M. (2016). Salinity-Induced variation in biochemical markers provides insight into the mechanisms of salt tolerance in common (Phaseolus vulgaris) and runner (P. coccineus) beans. International Journal of Molecular Sciences, 17(9), 1582. doi:10.3390/ijms17091582
CrossrefPubMedPMCGoogle Scholar

Ali, M. A., Naveed, M., Mustafa, A., & Abbas, A. (2017). The good, the bad, and the ugly of rhizosphere microbiome. In V. Kumar, M. Kumar, S. Sharma, & R. Prasad (Eds.), Probiotics and plant health (pp. 253-290). Springer: Singapore. doi:10.1007/978-981-10-3473-2_11
CrossrefGoogle Scholar

Andrew, M., & Andrew, M. E. (2017). Specificity in legume-rhizobia symbiosis. International Journal of Molecular Sciences, 18, 705. doi:10.3390/ijms18040705
CrossrefPubMedPMCGoogle Scholar

Anwar, A., & Kim, J. K (2020). Transgenic breeding approaches for improving abiotic stress tolerance: recent progress andfuture perspectives. International Journal of Molecular Sciences, 21 (8). doi:10.3390/ijms21082695
CrossrefPubMedPMCGoogle Scholar

Anwar, A., Zhang, Sh., He, l., & Gao, J. (2022). Understanding the physiological and molecular mechanism of salinity stress tolerance in plants. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 50(4), 12959. doi:10.15835/nbha50412959
CrossrefGoogle Scholar

Ashraf, M., & Bashir, A. (2003). Salt stress induced changes in some organic metabolites and ionic relations in nodules and other plant parts of two crop legumes differing in salt tolerance. Flora - Morphology, Distribution, Functional Ecology of Plants, 198(6), 2003, 486-498. doi:10.1078/0367-2530-0012
CrossrefGoogle Scholar

Banasiak, J., Jamruszka, T., Murray, J. D., & Jasinski, M. (2021). A roadmap of plant membrane transporters in arbuscular mycorrhizal and legume-rhizobium symbioses. Plant Physiology, 187(4), 2071-2091. doi:10.1093/plphys/kiab280
CrossrefPubMedPMCGoogle Scholar

Bandeoǧlu, E., Eyidoǧan, F., Yücel, M., & Öktem, H. A. (2004). Antioxidant responses of shoots and roots of lentil to NaCl-salinity stress. Plant Growth Regulation, 42(1), 69-77. doi:10.1023/b:grow.0000014891.35427.7b
CrossrefGoogle Scholar

Bardgett, R. D., Mommer, L., & De Vries, F. T. (2014). Going underground: root traits as drivers of ecosystem processes. Trends in Ecology & Evolution, 29(12), 692-699. doi:10.1016/j.tree.2014.10.006
CrossrefPubMedGoogle Scholar

Bargaz, A., Zaman-Allah, M., Farissi, M., Lazali, M., Drevon, J.-J., Maougal, R. T., & Georg, C. (2015). Physiological and molecular aspects of tolerance to environmental constraints in grain and forage legumes. International Journal of Molecular Sciences, 16(8), 18976-19008. doi:10.3390/ijms160818976
CrossrefPubMedPMCGoogle Scholar

Borucki, W., & Sujkowska, M. (2007). The effects of sodium chloride-salinity upon growth, nodulation, and root nodule structure of pea (Pisum sativum L.) plants. Acta Physiologiae Plantarum, 30(3), 293-301. doi:10.1007/s11738-007-0120-8
CrossrefGoogle Scholar

Bruning, B., & Rozema, J. (2013). Symbiotic nitrogen fixation in legumes: perspectives for saline agriculture. Environmental and Experimental Botany, 92, 134-143. doi:10.1016/j.envexpbot.2012.09.001
CrossrefGoogle Scholar

Cao, D., Li, Y., Liu, B., Kong, F., & Tran, L. S. P. (2018). Adaptive mechanisms of soybean grown on salt-affected soils. Land Degradation & Development, 29(4), 1054-1064. doi:10.1002/Idr.2754
CrossrefGoogle Scholar

Chakraborty, S., & Harris, J. M. (2022). At the crossroads of salinity and rhizobium-legume symbiosis. Molecular Plant-Microbe Interactions, 35(7), 540-553. doi:110.1094/mpmi-09-21-0231-fi
CrossrefPubMedGoogle Scholar

Chakraborty, S., Driscoll, H. E., Abrahante, J. E., Zhang, F., Fisher, R. F., & Harris, J. M. (2021). Salt stress enhances early symbiotic gene expression in Medicago truncatula and induces a stress-specific set of rhizobium-responsive genes. Molecular Plant-Microbe Interactions, 34(8), 904-921. doi:10.1094/mpmi-01-21-0019-r
CrossrefPubMedPMCGoogle Scholar

Choudhury, F. K., Rivero, R. M., Blumwald, E., & Mittler, R. (2017). Reactive oxygen species, abiotic stress and stress combination. Plant Journal, 90(5), 856-867. doi:10.1111/tpj.13299
CrossrefPubMedGoogle Scholar

Do, T. D., Vuong, T. D., Dunn, D., Smothers, S., Patil, G., Yungbluth, D. C., Chen, P., Scaboo, A., Xu, D., Carter, T. E., Nguyen, H. T., & Grover Shannon, J. (2018). Mapping and confirmation of loci for salt tolerance in a novel soybean germplasm, Fiskeby III. Theoretical and Applied Genetics, 131(3), 513-524. doi:0.1007/s00122-017-3015-0
CrossrefPubMedGoogle Scholar

Domínguez-Ferreras, A., Pérez-Arnedo, R., Becker, A., Olivares, J., Soto, M. J., & Sanjuán, J. (2006). Transcriptome profiling reveals the importance of plasmid pSymB for osmoadaptation of Sinorhizobium meliloti. Journal of Bacteriology, 188 (21), 7617-7625. doi:10.1128/jb.00719-06
CrossrefPubMedPMCGoogle Scholar

Egamberdieva, D., Jabborova, D., & Wirth, S. (2013). Alleviation of salt stress in legumes by co-inoculation with Pseudomonas and Rhizobium. In N. K. Arora (Ed.), Plant microbe symbiosis: fundamentals and advances (pp. 291-303). Springer India. doi:10.1007/978-81-322-1287-4_11
CrossrefGoogle Scholar

El Sayed, H. E. S. (2011). Influence of NaCl and Na2SO4 treatments on growth development of broad bean (Vicia faba L.) plant. Journal of Life Sciences, 5(7), 513-523.
Google Scholar

Elsheikh, E. A. E., & Wood, M. (1990). Effect of salinity on growth, nodulation and nitrogen yield of chickpea (Cicer arietinum L.). Journal of Experimental Botany, 41(10), 1263-1269. doi:10.1093/jxb/41.10.1263
CrossrefGoogle Scholar

Essa, T. A. (2002). Effect of salinity stress on growth and nutrient composition of three soybean (Glycine max L. Merrill) cultivars. Journal of Agronomy and Crop Science, 188(2), 86-93. doi:10.1046/j.1439-037X.2002.00537.x
CrossrefGoogle Scholar

Farooq, M., Gogoi, N., Hussain, M., Barthakur, S., Paul, S., Bharadwaj, N., Migdadi, H. M., Alghamdi, S. S., & Siddique, K. H. M. (2017). Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiology and Biochemistry, 118, 199-217. doi:10.1016/j.plaphy.2017.06.020
CrossrefPubMedGoogle Scholar

Garg, N. & Bhandari, P. (2016). Silicon nutrition and mycorrhizal inoculations improve growth, nutrient status, K+/Na+ ratio and yield of Cicer arietinum L. genotypes under salinity stress. Plant Growth Regulation, 78(3), 371-387. doi:10.1007/s10725-015-0099-x
CrossrefGoogle Scholar

Ghassemi-Golezani, K., Taifeh-Noori, M., & Oustan, S. (2010). Oil and protein accumulation in soybean grains under salinity stress. Notulae Scientia Biologicae, 2(2), 64-67. doi:10.15835/nsb224590
CrossrefGoogle Scholar

Glick, B. R. (2004). Changes in plant growth and development by rhizosphere bacteria that modify plant ethylene levels. Acta Horticulturae, 631, 265-273. doi:10.17660/actahortic.2004.631.33
CrossrefGoogle Scholar

Glick, B. R., Cheng, Z., Czarny, J., & Duan, J. (2007). Promotion of plant growth by ACC deaminase-producing soil bacteria. European Journal of Plant Pathology, 119(3), 329-339. doi:10.1007/s10658-007-9162-4
CrossrefGoogle Scholar

Haileselasie, T. H., & Teferii, G. (2012). The effect of salinity stress on germination of chickpea (Cicer arietinum L.) land race of Tigray. Current Research Journal of Biological Sciences, 4(5), 578-583.
Google Scholar

Hasanuzzaman, M., Parvin, K., Anee, T. I., Awal, A., & Masud, Ch. (2022). Salt stress responses and tolerance in soybean. In M. Hasanuzzaman, K. Nahar (Ed.), Plant stress physiology - perspectives in agriculture. IntechOpen. doi:10.5772/intechopen.102835
CrossrefGoogle Scholar

Hashem, A., Abd Allah, E. F., Alqarawi, A. A., Wirth, S., & Egamberdieva, D. (2019). Comparing symbiotic performance and physiological responses of two soybean cultivars to arbuscular mycorrhizal fungi under salt stress. Saudi Journal of Biological Sciences, 26(1), 38-48. doi:10.1016/j.sjbs.2016.11.015
CrossrefPubMedPMCGoogle Scholar

Hussain, S., Zhang, J., Zhong, C., Zhu, L, Cao, X., Yu, S., Allen Bohr, J., Hu, J, & Jin, Q. (2017). Effects of salt stress on rice growth, development characteristics, and the regulating ways: a review. Journal of Integrative Agriculture, 16(11), 2357-2374. doi:10.1016/S2095-3119(16)61608-8
CrossrefGoogle Scholar

Ilangumaran, G., & Smith. D. L. (2017). Plant growth promoting rhizobacteria in amelioration of salinity stress: a systems biology perspective. Frontiers in Plant Science, 8, 1768. doi:10.3389/fpls.2017.01768
CrossrefPubMedPMCGoogle Scholar

Irshad, A., Rehman, R. N. U., Abrar, M. M., Saeed, Q., Sharif, R., & Hu, T. (2021). Contribution of rhizobium-legume symbiosis in salt stress tolerance in Medicago truncatula evaluated through photosynthesis, antioxidant enzymes, and compatible solutes accumulation. Sustainability, 13(6), 3369. doi:10.3390/su13063369
CrossrefGoogle Scholar

IIsayenkov, S. V. (2012). Physiological and molecular aspects of salt stress in plants. Cytology and Genetics, 46(5), 302-318. doi:10.3103/s0095452712050040
CrossrefGoogle Scholar

Karmakar, K., Rana, A., Rajwar, A., Sahgal, M., & Johri, B. N. (2015). Legume-rhizobia symbiosis under stress. In N. K. Arora (Ed.), Plant microbes symbiosis: applied facets (pp. 241-258). Springer India. doi:10.1007/978-81-322-2068-8_12
CrossrefGoogle Scholar

Khan, H. A., Siddique, K. H. M., Munir, R., & Colmer, T. D. (2015). Salt sensitivity in chickpea: growth, photosynthesis, seed yield components and tissue ion regulation in contrasting genotypes. Journal of Plant Physiology, 182, 1-12. doi:10.1016/j.jplph.2015.05.002
CrossrefPubMedGoogle Scholar

Khan, M. S. A., Karim, M. A., Haque, M. M., Islam, M. M., Karim, A. J. M. S., & Mian, M. A. K. (2016). Influence of salt and water stress on growth and yield of soybean genotypes. Pertanika Journal of Tropical Agricultural Science, 39(2), 167-180.
Google Scholar

Kozlovskyy, V., & Romanyuk, N. (2021). The impact of pine self-afforestation on podzolization process in semi-natural grassland areas of Volyn Polissya (Ukraine). Studia Biologica, 15(2), 47-62. doi:10.30970/sbi.1502.651
CrossrefGoogle Scholar

Lange, M., Eisenhauer, N., Sierra, A. C., Bessler, H., Engels, C., Griffiths, I. R., & Gleixner, G. (2015). Plant diversity increases soil microbial activity and soil carbon storage. Nature Communications, 6(1), 6707. doi:10.1038/ncomms7707
CrossrefPubMedGoogle Scholar

López-Gómez, M., Palma, F., & Lluch, C. (2013). Strategies of salt tolerance in the rhizobia-legume symbiosis. In M. B. R. González & J. Gonzalez-López (Eds.), Beneficial plant-microbial interactions: ecology and applications (pp. 99-121). NW, USA: CRC Press. doi:10.1201/b15251
CrossrefGoogle Scholar

Ma, Q., Kang, J., Long, R., Zhang, T., Xiong, J., Zhang, K., Wang, T., Yang, Q., & Sun, Y. (2017). Comparative proteomic analysis of alfalfa revealed new salt and drought stress-related factors involved in seed germination. Molecular Biology Reports, 44(3), 261-272. doi:10.1007/s11033-017-4104-5
CrossrefPubMedGoogle Scholar

Miransari, M., & Smith, D.L. (2009). Alleviating salt stress on soybean (Glycine max (L.) Merr.) - Bradyrhizobium japonicum symbiosis, using signal molecule genistein. European Journal of Soil Biology, 45(2), 146-152. doi:10.1016/j.ejsobi.2008.11.002
CrossrefGoogle Scholar

Moura, G. G. D. de, Armas, R. D. de, Meyer, E., Giachini, A. J., Rossi, M. J., & Soares, C. R. F. S. (2016). Rhizobia isolated from coal mining areas in the nodulation and growth of leguminous trees. Revista Brasileira de Ciência Do Solo, 40, e0150091. doi:10.1590/18069657rbcs20150091
CrossrefGoogle Scholar

Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biotechnology, 59(1), 651-681. doi:10.1146/annurev.arplant.59.032607.092911
CrossrefPubMedGoogle Scholar

Nachshon, U. (2018). Cropland soil salinization and associated hydrology: trends, processes and examples. Water, 10(8), 1030. doi:10.3390/w10081030
CrossrefGoogle Scholar

Nadeem, M., Li, J., Yahya, M., Wang, M., Ali, A., Cheng, A., Wang, X., & Ma, Ch. (2019). Grain legumes and fear of salt stress: focus on mechanisms and management strategies. International Journal of Molecular Sciences, 20(4), 799. doi:10.3390/ijms20040799
CrossrefPubMedPMCGoogle Scholar

Nandwal, A. S., Godara, M., Kamboj, D. V., Kundu, B. S., Mann, A., Kumar, B., & Sharma, S. K. (2000). Nodule functioning in trifoliate and pentafoliate mungbean genotypes as influenced by salinity. Biologia Plantarum, 43, 459-462. doi:10.1023/A:1026704107525
CrossrefGoogle Scholar

Nayak, S. S., Pradhan, S., Sahoo, D., & Parida, A. (2020). De novo transcriptome assembly and analysis of Phragmites karka, aninvasive halophyte, to study the mechanism of salinity stress tolerance. Scientific Reports, 10, 5192. doi:10.1038/s41598-020-61857-8
CrossrefPubMedPMCGoogle Scholar

Ning, L., Kan, G., Shao, H., & Yu, D. (2018). Physiological and transcriptional responses to salt stress in salt-tolerant and salt-sensitive soybean (Glycine max (L.) Merr.) seedlings. Land Degradation and Development, 29(8), 2707-2719. doi:10.1002/ldr.3005
CrossrefGoogle Scholar

Nitawakia, Y., Kitabayashib, H., Masonc, M. L. T., Yamamotod, A., & Saekid, Y. (2021). Effect of salt stress on soybean growth and nodulation under inoculation with soybean rhizobia. Soil Science and Plant Nutrition, 67(2), 103-113. doi:10.1080/00380768.2020.1860644
CrossrefGoogle Scholar

Palma, F., López-Gómez, M., Tejera, N. A., & Lluch, C. (2014). Involvement of abscisic acid in the response of Medicago sativa plants in symbiosis with Sinorhizobium meliloti to salinity. Plant Sciences, 223, 16-24. doi:10.1016/j.plantsci.2014.02.005
CrossrefPubMedGoogle Scholar

Pereira, S. I. A., Lima, A. I. G., & Figueira, E. M. A. P. (2008). Rhizobium leguminosarum isolated from agricultural ecosystems subjected to different climatic influences: the relation between genetic diversity, salt tolerance and nodulation efficiency. In T.-X. Liu (Ed.), Soil ecology research developments (pp. 247-263). NY, USA: Nova Science
Google Scholar

Pitann, B., Kranz, T., Zörb, C., Walter, A., Schurr, U., & Mühling, K. H. (2011). Apoplastic pH and growth in expanding leaves of Vicia faba under salinity. Environmental and Experimental Botany, 74, 31-36. doi:10.1016/j.envexpbot.2011.04.015
CrossrefGoogle Scholar

Qados, A. M. S. A. (2010). Effect of arginine on growth, nutrient composition, yield and nutritional value of mungbean plants grown under salinity stress. Nature and Science, 8(7), 30-42.
Google Scholar

Sehrawat, N., Yadav, M., Bhat, K., Sairam, R., & Jaiwal, P. (2015). Effect of salinity stress on mungbean (Vigna radiata (L.) Wilczek) during consecutive summer and spring seasons. Journal of Agricultural Sciences Belgrade, 60(1), 23-32. doi:10.2298/jas1501023S
CrossrefGoogle Scholar

Shu, K., Qi, Y., Chen, F., Meng, Y., Luo, X., Shuai, H., Zhou, W., Ding, J., Du. J., Liu, J., Yang, F., Wang, Q., Liu, W., Yong, T., Wang, X., Feng Y., & Yang, W. (2017). Salt stress represses soybean seed germination by negatively regulating GA biosynthesis while positively mediating ABA biosynthesis. Frontiers in Plant Science, 8, 1372. doi:10.3389/fpls.2017.01372
CrossrefPubMedPMCGoogle Scholar

Singleton, P. W., & Bohlool, B. B. (1984). Effect of salinity on nodule formation by soybean. Plant Physiology, 74 (1), 72-76. doi:10.1104/pp.74.1.72
CrossrefPubMedPMCGoogle Scholar

Soussi, M., Ocana, A., & Lluch, C. (1998). Effects of salt stress on growth, photosynthesis and nitrogen fixation in chick-pea (Cicer arietinum L.). Journal of Experimental Botany, 49(325),1329-1337. doi:10.1093/jxb/49.325.1329
CrossrefGoogle Scholar

Swaraj, K., & Bishnai, N. R. (1999). Effect of salt stress on nodulation and nitrogen fixation in legumes. Indian Journal of Experimental Biology, 37(9), 843-848.
Google Scholar

Torabian, S., Farhangi-Abriz, S., & Rathjen, J. (2018). Biochar and lignite affect H+-ATPase and H+-PPase activities in root tonoplast and nutrient contents of mungbean under salt stress. Plant Physiology and Biochemistry, 129, 141-149. doi: 10.1016/j.plaphy.2018.05.030
CrossrefPubMedGoogle Scholar

Van Eerd, L. L., Congreves, K. A., Hayes, A., Verhallen, A., & Hooker, D. C. (2013). Long-term tillage and crop rotation effects on soil quality, organic carbon, and total nitrogen. Canadian Journal of Soil Science, 94(3), 303-315. doi:10.4141/cjss2013
CrossrefGoogle Scholar

van Zelm, E., Zhang, Y., & Testerink, C. (2020). Salt tolerance mechanisms of plants. Annual Review in Plant Biology, 71(1), 403-433. doi:10.1146/annurev-arplant-050718-100005
CrossrefPubMedGoogle Scholar

Velagaleu, R. R., & Mursh, S. (1989). Influence of host cultivars and Bradyrhizobium strains on the growth and symbiotic performance of soybean under salt stress. Plant and Soil, 119(1), 133-138. doi:10.1007/bf02370277
CrossrefGoogle Scholar

Ventorino, V., Caputo, R., de Pascale, S., Fagnano, M., Pepe, O., & Moschetti G. (2012). Response to salinity stress of Rhizobium leguminosarum bv. viciae strains in the presence of different legume host plants. Annals of Microbiology, 62, 811-823. doi:10.1007/s13213-011-0322-6
CrossrefGoogle Scholar

Vriezen, J. A. C., de Bruijn, F.J., & Nusslein, K. (2007). Responses of rhizobia to desiccation in relation to osmotic stress, oxygen, and temperature. Applied and Environmental Microbiology, 73(11), 3451-3459. doi:10.1128/aem.02991-06
CrossrefPubMedPMCGoogle Scholar

Wang, Y., Zhang, Z., Zhang, P., Cao, Y., Hu, T., & Yang, P. (2016). Rhizobium symbiosis contribution to short-term salt stress tolerance in alfalfa (Medicago sativa L.). Plant and Soil, 402(1-2), 247-261. doi:10.1007/s11104-016-2792-6
CrossrefGoogle Scholar

Xu, Z., Zhang, N., Fu, H., Wang, F., Wen, M., Chang, H., Wu, J., Abdelaala, W. B., Luo, Q., Li, Y., Li, C., Wang, Q., & Wang, Z. Y. (2022). Salt stress modulates the landscape of transcriptome and alternative splicing in date palm (Phoenix dactylifera L.). Frontiers in Plant Science, 12, 807739. doi:10.3389/fpls.2021.807739
CrossrefPubMedPMCGoogle Scholar

Yadav, H. D., Yadav, O. P., Dhankar, O. P., & Oswal, M. C. (1989). Effect of chloride salintiy and gernmination, growth and mineral composition of chickpea (Cicer arietinum L.). Annals of Arid Zone, 28, 63-67.
Google Scholar

Yang, Y., & Guo, Y. (2018). Unraveling salt stress signaling in plants. Journal of Integrative Plant Biology, 60(9), 796-804. doi:10.1111/jipb.12689
CrossrefPubMedGoogle Scholar

Zahran, H. H. (1999). Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiology and Molecular Biology Reviews, 63(4), 968-989. doi:10.1128/mmbr.63.4.968-989.1999
CrossrefPubMedPMCGoogle Scholar

Zhang, D. Y., Kumar, M., Xu, L., Wan, Q., Huang, Y. H., Xu, Z. L., He, X. L., Ma, J. B., Pandey, G. K., & Shao, H. B. (2017). Genome-wide identification of Major Intrinsic Proteins in Glycine soja and characterization of GmTIP2; 1 function under salt and water stress. Scientific Reports, 7(1), 4106. doi:10.1038/s41598-017-04253-z
CrossrefPubMedPMCGoogle Scholar

Zhao, S., Zhang, Q., Liu, M., Zhou, H., Ma, C., & Wang, P. (2021). Regulation of plant responses to salt stress. International Journal of Molecular Sciences, 22, 4609. doi:10.3390/ijms22094609
CrossrefPubMedPMCGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Lyudmyla Mykhalkiv, Sergii Kots, Ivan Obeziuk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.