SULFATE-REDUCING BACTERIA OF THE HUMAN INTESTINE. II. THE ROLE IN THE DEVELOPMENT OF DISEASES
DOI: http://dx.doi.org/10.30970/sbi.0602.207
Abstract
The modern literature data about the role of microflora in the diseases of the large intestine of man are summarized. Special attention is paid to the sulfate-reducing bacteria role in ulcerative colitis development. The basic ways of hydrogen metabolism by sulfate-reducing bacteria in the large intestine are characterized. The influence and the action mechanism of the main product of the bacteria metabolism – hydrogen sulphide on cells are described. Antimicrobial drugs that are used during bowel diseases are characterized. The probiotics significance for the intestine diseases prevention and treatment is briefly described.
Keywords
Full Text:
PDF (Українська)References
1. Асауленко Л.Г., Пуріш Л.М., Козлова І.П. Етапи формування біоплівки сульфатвідновлювальними бактеріями. Мікробіол. журн, 2004; 66(3): 72-79. | |
| |
2. Кушкевич І.В. Сульфатвідновлювальні бактерії кишечника людини. I. Дисиміляційне відновлення сульфату. Біологічні студії/Studia Biologica, 2012; 6(1): 149-180. | |
| |
3. Перетятко Т., Галушка А., Гнатуш С. та ін. Використання органічних сполук сульфатвідновлювальними бактеріями роду Desulfovibrio. Наук. вісн. Ужгород. ун-ту. Сер. Біол, 2006; 18: 157-160. | |
| |
4. Anwar H., Dasgupta M.K., Costerton J.W. Testing the susceptibility of bacteria in biofilms to antibacterial agents. Antimicrob. Ag. Chemother, 1990; 34: 2043-2046. | |
| |
5. Aslam M., Batten J.J., Florin T.H.J. et al. Hydrogen sulphide induceddamage to the mucosal barrier in the rat. Gut, 1992; 33: 69. | |
| |
6. Attene-Ramos M.S., Wagner E.D., Gaskins H.R., Plewa M.J. Hydrogen sulfide induces direct radical-associated DNA damage. Mol. Cancer Res, 2007; 5: 455-459. | |
| |
7. Bamba T., Matsuda H., Endo M., Fujiyama Y. The pathogenic role of Bacteroides vulgatus in patients with ulcerative colitis. J. Gastroenterol,1995; 30(8): 45-47. | |
| |
8. Barton L.L., Hamilton W.A. Sulphate-reducing Bacteria. Environmental and Engineered. Cambridge University Press, 2007; 553 p. | |
| |
9. Baskar R., Li L., Moore P.K. Hydrogen sulfide-induces DNA damage and changes in apoptotic gene expression in human lung fibroblast cells. FASEB J, 2007; 21: 247-255. | |
| |
10. Breznak J.A., Switzer J.M. Acetate synthesis from H2 plus CO2 by termite microbes. Appl. Environ. Microbiol, 1986; 52: 623-630. | |
| |
11. Brigidi P., Swennen E., Rizzello F. et al. Effects of rifaximin administration on the intestinal microbiotia in patients with ulcerative colitis. J. Chemotherapy, 2002; 14: 290-295. | |
| |
12. Burke D., Axon A. Adhesive E. coli in inflammatory bowel disease and infective diarrhoea. BMJ, 1988; 297: 102-104. | |
| |
13. Campieri M., Gionchetti P. Bacteria as the cause of ulcerative colitis. Gut, 2001; 48: 132-135. | |
| |
14. Campieri M., Gionchetti P. Probiotics in inflammatory bowel disease: New insight to pathogenesis or a possible therapeutic alternative? Gastroenterology, 1999; 116: 1246-1260. | |
| |
15. Chadwick V.S. Etiology of chronic ulcerative colitis and Crohn's disease. In: The Large Intestine: Physiology, Pathophysiology and Disease. S.F. Phillips J.H. Pemberton, R.G. Shorter R.G. ed. Raven Press Ltd, New York, 1991; 445-463. | |
| |
16. Christl S.U., Gibson G.R., Murgatroyd P.R. et al. Impaired H2 metabolism in pneumatosis cystoides intestinalis. Gastroenterology, 1991; 100: 203. | |
| |
17. Christl S.U., Murgatroyd P.R., Gibson G.R., Cummings J.H. Production, excretion and metabolism of hydrogen in the large intestine. Gastroenterology, 102: 1269-1277. | |
| |
18. Cohavy O., Bruckner D., Gordon L.K. et al. Colonic bacteria express an ulcerative colitis pANCA-related protein epitope. Infect. Immun, 2000; 68: 1542-1548. | |
| |
19. Croucher S.C., Houston A.P., Bayliss C.E., Turner R.J. Bacterial populations associated with different regions of the human colon wall. Appl. Environ. Microbiol, 1983; 45: 1025-1033. | |
| |
20. Cummings J.H., Macfarlane G.T., Macfarlane S. Intestinal Bacteria and Ulcerative Colitis. Curr. Issues Intest. Microbiol., 2003; 4: 9-20. | |
| |
21. Deplancke B., Gaskins H.R. Microbial modulation of innate defense: goblet cells and the intestinal mucus layer. Am. J. Clin. Nutr, 2001; 73: 1131-1141. | |
| |
22. Duffy M., O'Mahony L., Coffey J.C. et al. Sulfate-reducing bacteria colonize pouches formed for ulcerative colitis but not for familial adenomatous polyposis. Dis. Colon. Rectum, 2002; 45: 384-388. | |
| |
23. Fabia R, Ar'Rajab A., Johansson M.-L. et al. Impairment of bacterial flora in human ulcerative colitis and experimental colitis in the rat. Digestion, 1993; 54: 248-255. | |
| |
24. Farrell R.J., LaMont J.T. Microbial factors in inflammatory bowel disease. Gastroenterol. Clin. North Am, 2002; 31: 41-62. | |
| |
25. Farrell R.J., Peppercorn M.A. Ulcerative colitis. Lancet, 2002; 359: 331-340. | |
| |
26. Finkelstein J.D. Inborn errors of sulfur-containing amino acid metabolism. J. Nutr, 2006; 136: 1750-1754. | |
| |
27. Fiocchi C. Inflammatory bowel disease: etiology and pathogenesis. Gastroenterology, 1998; 115: 182-205. | |
| |
28. Fiorucci S., Distrutti E., Cirino G., Wallace J.L. The emerging roles of hydrogen sulfide in the gastrointestinal tract and liver. Gastroenterology, 2006; 131: 259-271. | |
| |
29. Fite A., Macfarlane G.T., Cummings J.H. et al. Identification and quantitation of mucosal and faecal desulfovibrios using real time polymerase chain reaction. Gut, 2004; 53: 523-529. | |
| |
30. Florin T.H. Hydrogen sulphide and total acid-volatile sulphide in faeces, determined with a direct spectrophotometric method. Clin. Chim. Acta, 1991; 196: 127-134. | |
| |
31. Florin T.H.J., Gibson G.R., Neale G., Cummings J.H. A role for sulphate-reducing bacteria in ulcerative colitis? Gastroenterology, 1990; 98: 170. | |
| |
32. Florin T.H.J., Neale G., Gibson G.R. et al. Metabolism of dietary sulphate: absorption and excretion in humans. Gut, 1991; 32: 766-773. | |
| |
33. Florin T.H.J., Neale G., Goretski S., Cummings J.H. The sulfate content of foods and beverages. J. Food Comp. Analysis, 1993; 6: 140-151. | |
| |
34. Fox J.G., Dewhirst F.E., Fraser G.J. et al. Intracellular Campylobacter-like organism from ferrets and hamsters with proliferative bowel disease is a Desulfovibrio sp. J. Clin. Microbiol, 1994; 32: 1229-1237. | |
| |
35. Gardiner K.R., Halliday M.I., Barclay G.R. et al. Significance of systemic endotoxaemia in inflammatory bowel disease. Gut, 1995; 36: 897-901. | |
| |
36. Ge Y., Konrad M.A., Matherly L.H., Taub J.W. Transcriptional regulation of the human cystathionine beta-synthase-1b basal promoter: synergistic transactivation by transcription factors NF-Y and Sp1/Sp3. Biochem. J, 2001; 357: 97-105. | |
| |
37. Giaffer M.H., Holdsworth C.D., Duerden B.I. The assessment of faecal flora in patients with inflammatory bowel disease by a simplified bacteriological technique. Med. Microbiol, 1991; 35: 238-243. | |
| |
38. Gibson G.R., Cummings J.H., Macfarlane G.T. Growth and activities of sulphate-reducing bacteria in gut contents of health subjects and patients with ulcerative colitis. FEMS Microbiol. Ecol, 1991; 86: 103-112. | |
| |
39. Gibson G.R., Macfarlane G.T., Cummings J.H. Sulphate reducing bacteria and hydrogen metabolism in the human large intestine. Gut, 1993; 34: 437-439. | |
| |
40. Gibson G.R., Macfarlane S., Macfarlane G.T. Metabolic interactions involving sulphate-reducing and methanogenic bacteria in the human large intestine. FEMS Microbiol. Ecol, 1993; 12: 117-125. | |
| |
41. Gilat T., Leichtman G., Delpre G. et al. A comparison of metronidazole and sulfasalazine in the maintenance of remission in patients with ulcerative colitis. J. Clin. Gastroenterol, 1989; 11: 392-395. | |
| |
42. Gionchetti P., Rizzello F., Venturi A. et al. Antibiotic combination therapy in patients with chronic, treatment-resistant pouchitis. Aliment. Pharmacol. Ther, 1999; 13: 713-718. | |
| |
43. Guarner F., Malagelada J.R. Gut flora in health and disease. Lancet, 2003; 361: 512-519. | |
| |
44. Hans A.U., Scholmerich J., Gross V., Falk W. The role of the resident intestinal flora in acute and chronic dextran sulfate sodium-induced colitis in mice. Eur. J. Gastroenterol. Hepatol, 2000; 12: 267-273. | |
| |
45. Hooper L.V., Wong M.H., Thelin A. et al. Molecular analysis of commensal host-microbial relationships in the intestine. Science, 2001; 291: 881-884. | |
| |
46. Jiang Z.D., Ke S., Palazzini E. et al. In vitro activity and fecal concentration of rifaximin after oral administration. Antimicrob. Ag. Chemother, 2000; 44: 2205-2206. | |
| |
47. Kennedy R.J., Hoper M., Weir H. et al. Probiotic therapy stabilises the gut mucosal barrier in the IL-10 knockout model of mouse colitis. Br. J. Surg, 2000; 87: 669-670. | |
| |
48. Kleessen B., Kroesen A.J., Buhr H.J., Blaut M. Mucosal and invading bacteria in patients with inflammatory bowel disease compared with controls. Scand. J. Gastroenterol, 2002; 37: 1034-1041. | |
| |
49. Kraus J.P., Oliveriusova J., Sokolova J. et al. The human cystathionine beta-synthase (CBS) gene: complete sequence, alternative splicing, and polymorphisms. Genomics, 1998; 52: 312-324. | |
| |
50. Kristiansson J.K., Schonheit P., Thauer R.K. Different Ks values for hydrogen of methanogenic bacteria and sulfate reducing bacteria: an explanation for the apparent inhibition of methanogenesis by sulfate. Arch. Microbiol, 1982; 131: 278-282. | |
| |
51. Kruis W., Schutz E., Fric P. et al. Double-blind comparison of an oral Escherichia coli preparation and mesalazine in maintaining remission of ulcerative colitis. Aliment. Pharmacol. Ther, 1999; 11: 853-858. | |
| |
52. Levitt M.D., Furne J., Springfield J. et al. Detoxification of hydrogen sulfide and methanethiol in the cecal mucosa. J. Clin. Invest, 1999; 104: 1107-1114. | |
| |
53. Levonen A.L., Lapatto R., Saksela M., Raivio K.O. Human cystathionine gamma-lyase: developmental and in vitro expression of two isoforms. Biochem. J, 2000; 347: 291-295. | |
| |
54. Lewis S., Brazier J., Beard D. et al. Effects of metronidazole and oligofructose on faecal concentrations of sulphate-reducing bacteria and their activity in human volunteers. Scand. J. Gastroenterol, 2005; 40: 1296-1303. | |
| |
55. Linskens R.K., Huijsdens X.W., Savelkoul P.H.M. et al. The bacterial flora in inflammatory bowel disease: current insights in pathogenesis and the influence of antibiotics and probiotics. Scand. J. Gastroenterol, 2001; 36: 29-40. | |
| |
56. Lobo A.J., Burke D.A., Sobala G.M., Axon A.T.R. Oral tobramycin in ulcerative colitis: effect on maintenance of remission. Aliment. Pharmacol. Ther, 1993; 7: 155-158. | |
| |
57. Loftus E.V., Silverstein M.D., Sandborn W.J. et al. Ulcerative colitis in Olmsted County, Minnesota, 1940- 1993: incidence, prevalence, and survival. Gut, 2000; 46: 336-343. | |
| |
58. Loubinoux J., Mory F., Pereira I.A., Le Faou A.E. Bacteremia caused by a strain of Desulfovibrio related to the provisionally named Desulfovibrio fairfieldensis. J. Clin. Microbiol, 2000; 38: 931-934. | |
| |
59. Lovley D.R., Klug M.J. Sulfate-reducers can outcompete methanogens at freshwater sulfate concentrations. Appl. Environ. Microbiol, 1983; 45: 187-192. | |
| |
60. Lukas M., Konecny M., Zboril V. Rifaximin in patients with mild to moderate activity of ulcerative colitis: An open label study. Gastroenterology, 2002; 122: 434. | |
| |
61. Macfarlane S., Dillon J.F. Microbial biofilms in the human gastrointestinal tract. J. Appl. Microbiol, 2007; 102: 1187-1196. | |
| |
62. Macfarlane S., Hopkins M.J., Macfarlane G.T. Bacterial growth and metabolism on surfaces in the large intestine. Microb. Ecol. Hlth. Dis, 2000; 2: 64-72. | |
| |
63. Macpherson A., Khoo U.Y., Forgacs I. et al. Mucosal antibodies in inflammatory bowel disease are directed against intestinal bacteria. Gut, 1996; 38: 365-375. | |
| |
64. Madsen K.L., Doyle J.S., Jewell L.D. et al. Lactobacillus species prevents colitis in interleukin 10 gene-deficient mice. Gastroenterology, 1999; 116: 1107-1114. | |
| |
65. Madsen K.L., Doyle J.S., Tavernini M.M. et al. Antibiotic therapy attenuates colitis in interleukin 10 gene-deficient mice. Gastroenterology, 2000; 118: 1094-1105. | |
| |
66. Mantzaris G.J., Archavlis E., Christoforidis P. et al. A prospective randomized controlled trial of oral ciprofloxacin in acute ulcerative colitis. Am. J. Gastroenterol, 1997; 92: 454-456. | |
| |
67. Mantzaris G.J., Petraki K., Archavlis E. et al. A prospective randomised controlled trial of intravenous ciprofloxacin as an adjunct to corticosteroids in acute, severe ulcerative colitis. Scand. J. Gastroenterol, 2001; 36: 971-974. | |
| |
68. Mao Y., Nobaek S., Kasravi B. et al. The effects of Lactobacillus strains and oat fiber on methotrexateinduced enterocolitis in rats. Gastroenterology, 1996; 111: 334-344. | |
| |
69. Marcus R., Watt J. Ulcerative disease of the colon in laboratory animals induced by pepsin inhibitors. Gastroenterology, 1974; 67: 473-483. | |
| |
70. Matsuda H., Fujiyama Y., Andoh A. et al. Characterization of antibody responses against rectal mucosa-associated bacterial flora in patients with ulcerative colitis. J. Gastroenterol. Hepatol, 2000; 15: 61-68. | |
| |
71. Moehle C., Ackermann N., Langmann T. et al. Aberrant intestinal expression and allelic variants of mucin genes associated with inflammatory bowel disease. J. Mol. Med, 2006; 84: 1055-1066. | |
| |
72. Montgomery S.M., Morris D.L., Thompson N.P. et al. Prevalence of inflammatory bowel disease in British 26 year olds: national longitudinal birth cohort. Br. Med. J, 1998; 316: 1058-1059. | |
| |
73. Okayasu I., Hatakeyama S., Yamada M. et al. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology, 1990; 98: 694-702. | |
| |
74. Onderdonk A.B. Role of the intestinal microflora in ulcerative colitis. In: Human Intestinal Microflora in Health and Disease. D.J. Hentges ed. Academic Press, London, 1983; 481-493. | |
| |
75. Onderdonk A.B., Hermos J.A., Dzink J.L., Bartlett J.G. Protective effect of metronidazole in experimental ulcerative colitis. Gastroenterology, 1978; 74: 521-526. | |
| |
76. Pacifici G.M., Romiti P., Santerini S., Giuliani L. S-methyltransferases in human intestine: differential distribution of the microsomal thiol methyltransferase and cytosolic thiopurine methyltransferase along the human bowel. Xenobiotica, 1993; 23: 671-679. | |
| |
77. Pathmakanthan S., Thornley J.P., Hawkey C.J. Mucosally associated bacterial flora of the human colon: quantitative and species specific differences between normal and inflammed colonic biopsies. Microb. Ecol. Hlth. Dis, 1999; 11: 169-174. | |
| |
78. Pitcher M.C., Beatty E.R., Cummings J.H. The contribution of sulphate reducing bacteria and 5-aminosalicylic acid to faecal sulphide in patients with ulcerative colitis. Gut, 2000; 46: 64-72. | |
| |
79. Pitcher M.C., Cummings J.H. Hydrogen sulphide: a bacterial toxin in ulcerative colitis? Gut, 1996; 39: 1-4. | |
| |
80. Podolsky D.K. Inflammatory bowel disease. N. Engl. J. Med, 2002; 347: 417-429. | |
| |
81. Postgate J.R. The sulfate-reducing bacteria. 2nd ed. Cambridge: Cambridge Univ. Press, 1984; 199 p. | |
| |
82. Poxton I.R., Brown R., Sawyerr A., Ferguson A. Mucosa-associated bacterial flora of the human colon. J. Med. Microbiol, 1997; 46: 85-91. | |
| |
83. Prins R.A., Lankhorst A. Synthesis of acetate from CO2 in the cecum of some rodents. FEMS Microbiol. Letts, 1977; 1: 255-258. | |
| |
84. Qi K., Lu C.D., Owens F.N. Sulfate supplementation of Angora goats: sulfur metabolism and interactions with zinc, copper and molybdenum. Small Ruminant Research, 1993; 11: 209-225. | |
| |
85. Ramasamy S., Singh S., Taniere P. et al. Sulfide-detoxifying enzymes in the human colon are decreased in cancer and upregulated in differentiation. Am. J. Physiol. Gastrointest. Liver Physiol, 2006; 291: 288-296. | |
| |
86. Rath H.C., Schultz M., Freitag R. et al. Different subsets of enteric bacteria induce and perpetuate experimental colitis in rats and mice. Infect. Immun, 2001; 69: 227-2285. | |
| |
87. Rembacken B.J., Snelling A.M., Hawkey P.M. et al. Non-pathogenic Escherichia coli versus mesalazine for the treatment of ulcerative colitis: a randomised trial. Lancet, 1999; 354: 636-639. | |
| |
88. Rizzello F., Gionchetti P., Venturi A. et al. Rifaximin systemic absorption in patients with ulcerative colitis. Eur. J. Clin. Pharmacol, 1998; 54: 91-93. | |
| |
89. Roediger W.E. The colonic epithelium in ulcerative colitis: an energy-deficiency disease? Lancet, 1980; 2: 712-715. | |
| |
90. Roediger W.E.W., Duncan A., Kapaniris O., Millard S. Sulphide impairment of substrate oxidation in rat colonocytes: A biochemical basis for ulcerative colitis? Clin. Sci, 1993; 85: 1-5. | |
| |
91. Roediger W.E.W., Duncan S., Kapaniris O., Millard S. Reducing sulfur compounds of the colon impair colonocyte nutrition: Implications for ulcerative colitis. Gastroenterology, 1993; 104: 802-809. | |
| |
92. Rowan F.E., Docherty N.G., Coffey J.C., O'Connell P.R. Sulphate-reducing bacteria and hydrogen sulphide in the aetiology of ulcerative colitis. British Journal of Surgery, 2009; 96: 151-158. | |
| |
93. Ruseler van Embden J.G.H., Schouten W.R., van Lieshout L.M.C. Pouchitis: result of microbial imbalance? Gut, 1994; 35: 658-664. | |
| |
94. Sadlack B., Merz H., Schorle H. et al. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell, 1993; 75: 253-261. | |
| |
95. Saitoh S., Noda S., Aiba Y. et al. Bacteroides ovatus as the predominant commensal intestinal microbe causing a systemic antibody response in inflammatory bowel disease. Clin. Diagnost. Lab. Immunol, 2002; 9: 54-59. | |
| |
96. Sartor R.B., Rath H.C., Sellon H.K. Microbial factors in chronic intestinal inflammation. Curr. Opin. Gastroenterol, 1996; 12: 327-333. | |
| |
97. Satsangi J., Landers C.J., Welsh K.I. et al. The presence of anti neutrophil antibodies reflects clinical and genetic heterogeneity within inflammatory bowel disease. Inflamm. Bowel. Dis, 1998; 4: 18-26. | |
| |
98. Schultsz C., Moussa M., van Ketel et al. Frequency of pathogenic and enteroadherent Escherichia coli in patients with inflammatory bowel disease and controls. J. Clin. Pathol, 1997; 50: 573-579. | |
| |
99. Schultz M., Veltkamp C., Dieleman L.A. Lactobacillus plantarum 299V in the treatment and prevention of spontaneous colitis in interleukin-10-deficient mice. Inflamm. Bowel. Dis, 2002; 8: 71-80. | |
| |
100. Sekirov I., Russell S.L., Antunes L.C.M., Finlay B.B. Gut Microbiota in Health and Disease. Physiol Rev, 2010; 90: 859-904. | |
| |
101. Siddiqui A., Ancha H., Tedesco D. et al. Antioxidant therapy with N-acetylcysteine plus mesalamine accelerates mucosal healing in a rodent model of colitis. Dig. Dis. Sci, 2006; 51: 698-705. | |
| |
102. Smith L., Kruszyna H., Smith R.P. The effect of methaemoglobin on the inhibition of cytochrome c oxidase by cyanide, sulfide or azide. Biochem. Pharmacol, 1977; 22: 47-50. | |
| |
103. Steffen R. Rifaximin: A nonabsorbed antimicrobial as a new tool for treatment of travelers' diarrhea. J. Travel Med, 2001; 8: 34-39. | |
| |
104. Stein J., Schroder O., Milovic V., Caspary W. Mercaptoproprionate inhibits butyrate uptake in isolated apical membrane vesicles of the rat distal colon. Gastroenterology, 1995; 108: 673-679. | |
| |
105. Strocchi A., Ellis C.J., Fume J.K., Levitt M.D. Study of constancy of hydrogen-consuming flora of human colon. Dig. Dis. Sci, 1994; 39: 494-497. | |
| |
106. Takeuchi H., Setoguchi T., Machigashira M. et al. Hydrogen sulfide inhibits cell proliferation and induces cell cycle arrest via an elevated p21 Cip1 level in Ca9-22 cells. J. Periodontal Res, 2008; 43: 90-95. | |
| |
107. Truelove S.C., Jewell D.P. Intensive intravenous regimen for severe attacks of ulcerative colitis. Lancet, 1974; 1: 1067-1070. | |
| |
108. Turunen U.M., Saarinen M., Farkkila M.A. et al. Antibody responses to Escherichia coli, Proteus mirabilis and Klebsiella, Pneumoniae in ulcerative colitis during ciprofloxacin treatment. Gastroenterology, 1999; 116: 834. | |
| |
109. Venturi A., Gionchetti P. Rizzello F. et al. Impact on the composition of the faecal flora by a new probiotic preparation: preliminary data on maintenance treatment of patients with ulcerative colitis. Aliment. Pharmacol. Ther, 1999; 13: 1103-1108. | |
| |
110. Wallace J.L., Dicay M., McKnight W., Martin G.R. Hydrogen sulfide enhances ulcer healing in rats. FASEB J, 2007; 21: 4070-4076. | |
| |
111. Walmsey R.S., Anthony A., Slim R. et al. Absence of Escherichia coli, Listeria monocytogenes, and Klebsiella pneumoniae antigens within inflammatory bowel disease tissues. J. Clin. Pathol, 1998; 51: 657-661. | |
| |
112. Wang R. Two's company, three's a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J, 2002; 16: 1792-1798. | |
| |
113. Wilson K., Mudra M., Furne J., Levitt M. Differentiation of the roles of sulfide oxidase and rhodanese in the detoxification of sulfide by the colonic mucosa. Dig. Dis. Sci, 2008; 53: 277-283. | |
| |
114. Yang G., Cao K., Wu L., Wang R. Cystathionine gamma-lyase overexpression inhibits cell proliferation via a H2S-dependent modulation of ERK1/2 phosphorylation and p21Cip/WAK-1. J. Biol. Chem, 2004; 279: 49199-49205. | |
| |
115. Zinkevich V.V., Beech I.B. Screening of sulfate-reducing bacteria in colonoscopy samples from healthy and colitic human gut mucosa. FEMS Microbiol. Ecol, 2000; 34: 147-155. | |
| |
116. Zoetendal E.G., VonWright A., Vilpponen-Salmela T. et al. Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl. Environ. Microbiol, 2002; 68: 3401-3407. |
Refbacks
- There are currently no refbacks.
Copyright (c) 2012 Studia biologica
This work is licensed under a Creative Commons Attribution 4.0 International License.