SPONTANEOUS FORMATION OF SPHEROIDS IN HUMAN UMBILICAL CORD MATRIX DERIVED CELLS CULTURE

O. O. Maslova, S. P. Shpilova, N. S. Shuvalova, O. G. Deryabina, V. A. Kordium


DOI: http://dx.doi.org/10.30970/sbi.0602.212

Abstract


The possibility of formation of spontaneous spheroids („mesenspheres”) in some samples of human umbilical cord matrix mesenchymal cell cultures are shown. The cellular composition of these formations and some of their properties are analyzed. Presence of undifferentiated cells in the spheroids is shown. Apparently, spheroids are the kind of cell state in culture.


Keywords


mesenchymal stem cells, spheroids, cell culture, umbilical cord matrix

References


1. Augello A., Kurth T. B., De Bari C. Mesenchymal stem cells: a perspective from in vitro cultures to in vivo migration and niche. Eur. Cell Mater, 2010; 1(20): 121-133.
https://doi.org/10.22203/eCM.v020a11
PMid:21249629

2. Baraniak P.R, McDevitt T.C. Scaffold-free culture of mesenchymal stem cell spheroids in suspension preserves multilineage potential. Cell Tissue Res, 2012; 347(3): 701-11.
https://doi.org/10.1007/s00441-011-1215-5
PMid:21833761 PMCid:PMC4149251

3. Baraniak P.R., Cooke M.T., Saeed R. et al. Stiffening of Human Mesenchymal Stem Cell Spheroid Microenvironments Induced by Incorporation of Gelatin Microparticles J. of the Mechanical Behavior of Biomed. Mat, 2012; 11: 63-71
https://doi.org/10.1016/j.jmbbm.2012.02.018
PMid:22658155 PMCid:PMC3528787

4. Bernardo M., Pagliara D., Locatelli F. Mesenchymal stromal cell therapy: a revolution in Regenerative Medicine? Bone Marrow Transplantation, 2012; 47: 164-171.
https://doi.org/10.1038/bmt.2011.81
PMid:21478914

5. Bieback K., Brinkmann I. Mesenchymal stromal cells from human perinatal tissues: From biology to cell therapy. World J. Stem Cells, 2010; 2(4): 81-92.
https://doi.org/10.4252/wjsc.v2.i4.81
PMid:21607124 PMCid:PMC3097927

6. Bourin P., Luc S., Valérie P. et al. Culture and Use of Mesenchymal Stromal Cells in Phase I and II Clinical Trials. Stem Cells International, 2010; 9: 1-8.
https://doi.org/10.4061/2010/503593
PMid:21052537 PMCid:PMC2968415

7. Dominici M., Le Blanc K., Mueller I. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 2006; 8(4): 315-317.
https://doi.org/10.1080/14653240600855905
PMid:16923606

8. Jäger M., Urselmann F., Witte F. Osteoblast differentiation onto different biometals with an endoprosthetic surface topography in vitro. J. of Biomed. Materials Research, Part A., 2008; 86(1): 61-75.
https://doi.org/10.1002/jbm.a.31552
PMid:17941017

9. Nekant, U., Mohanty L., Venugopal P. et al. Optimization and scale-up of Wharton's jelly-derived mesenchymal stem cells for clinical applications Stem Cell Research, 2010; 5(3): 244-254.
https://doi.org/10.1016/j.scr.2010.08.005
PMid:20880767

10. Osipova E.Y,. Shamanskaya T.V., Kurakina O.A. et al. Biological Characteristics of Mesenchymal Stem Cells during Ex Vivo Expansion. British Journ. of Medicine & Medical Research, 2011; 1(3): 85-95.
https://doi.org/10.9734/BJMMR/2011/282

11. Park K.H., Kim H., Moon S., Na K. Bone morphogenic protein-2 (BMP-2) loaded nanoparticles mixed with human mesenchymal stem cell in fibrin hydrogel for bone tissue engineering. J. of Biosc. and Bioeng, 2009; 108(6): 530-537.
https://doi.org/10.1016/j.jbiosc.2009.05.021
PMid:19914589

12. Reilly G., Engler A. Intrinsic extracellular matrix properties regulate stem cell differentiation. Journ. of Biomechanics, 2010; 43(1): 55-62.
https://doi.org/10.1016/j.jbiomech.2009.09.009
PMid:19800626

13. Sarkar D., Spencer J.A., Phillips J.A. et al. Engineered cell homing. Blood, 2011; 118(25): 184-191.
https://doi.org/10.1182/blood-2010-10-311464
PMid:22034631 PMCid:PMC3242725

14. Sensebe L., Bourin P., Tarte K. Good manufacturing practices production of mesenchymal stem/stromal cells. Hum. Gene Ther, 2011; 22(1): 19-26.
https://doi.org/10.1089/hum.2010.197
PMid:21028982

15. Si Y.L., Zhao Y.L., Hao H.J. et al. MSCs: Biological characteristics, clinical applications and their outstanding concerns. Ageing Res. Rev, 2011; 10(1): 93-103.
https://doi.org/10.1016/j.arr.2010.08.005
PMid:20727988

16. Stephens J., Cooper J., Phelan F., Dunkers J. Perfusion flow bioreactor for 3D in situ imaging: Investigating cell/biomaterials interactions. Biotechnol. Bioeng, 2007; 97: 952-961.
https://doi.org/10.1002/bit.21252
PMid:17149772

17. Taghizadeh R.R., Cetrulo K.J., Cetrulo C.L. Wharton's Jelly stem cells: Future clinical applications. Placenta, 2011; 32(S4): 311-315.
https://doi.org/10.1016/j.placenta.2011.06.010
PMid:21733573

18. Tong C. K., Vellasamy S., Tan B. C. Generation of mesenchymal stem cell from human umbilical cord tissue using a combination enzymatic and mechanical disassociation method Cell Biology International, 2011; 35: 221-226.
https://doi.org/10.1042/CBI20100326
PMid:20946106

19. Toyoda M., Takahashi H., Umezawa A. Ways for a mesenchymal stem cell to live on its own: maintaining an undifferentiated state ex vivo. Int. J. Hematol, 2007; 86(1): 1-4.
https://doi.org/10.1532/IJH97.07055
PMid:17675258

20. Valarmathi M.T., Yost M.J., Goodwin R. L., Potts J.D., The influence of proepicardial cells on the osteogenic potential of marrow stromal cells in a three-dimensional tubular scaffold, Biomaterials, 2008; 29(14): 2203-2216.
https://doi.org/10.1016/j.biomaterials.2008.01.025
PMid:18289664


Refbacks

  • There are currently no refbacks.


Copyright (c) 2012 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.