SPONTANEOUS FORMATION OF SPHEROIDS IN HUMAN UMBILICAL CORD MATRIX DERIVED CELLS CULTURE
DOI: http://dx.doi.org/10.30970/sbi.0602.212
Abstract
The possibility of formation of spontaneous spheroids („mesenspheres”) in some samples of human umbilical cord matrix mesenchymal cell cultures are shown. The cellular composition of these formations and some of their properties are analyzed. Presence of undifferentiated cells in the spheroids is shown. Apparently, spheroids are the kind of cell state in culture.
Keywords
Full Text:
PDF (Українська)References
1. Augello A., Kurth T. B., De Bari C. Mesenchymal stem cells: a perspective from in vitro cultures to in vivo migration and niche. Eur. Cell Mater, 2010; 1(20): 121-133. | |
| |
2. Baraniak P.R, McDevitt T.C. Scaffold-free culture of mesenchymal stem cell spheroids in suspension preserves multilineage potential. Cell Tissue Res, 2012; 347(3): 701-11. | |
| |
3. Baraniak P.R., Cooke M.T., Saeed R. et al. Stiffening of Human Mesenchymal Stem Cell Spheroid Microenvironments Induced by Incorporation of Gelatin Microparticles J. of the Mechanical Behavior of Biomed. Mat, 2012; 11: 63-71 | |
| |
4. Bernardo M., Pagliara D., Locatelli F. Mesenchymal stromal cell therapy: a revolution in Regenerative Medicine? Bone Marrow Transplantation, 2012; 47: 164-171. | |
| |
5. Bieback K., Brinkmann I. Mesenchymal stromal cells from human perinatal tissues: From biology to cell therapy. World J. Stem Cells, 2010; 2(4): 81-92. | |
| |
6. Bourin P., Luc S., Valérie P. et al. Culture and Use of Mesenchymal Stromal Cells in Phase I and II Clinical Trials. Stem Cells International, 2010; 9: 1-8. | |
| |
7. Dominici M., Le Blanc K., Mueller I. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 2006; 8(4): 315-317. | |
| |
8. Jäger M., Urselmann F., Witte F. Osteoblast differentiation onto different biometals with an endoprosthetic surface topography in vitro. J. of Biomed. Materials Research, Part A., 2008; 86(1): 61-75. | |
| |
9. Nekant, U., Mohanty L., Venugopal P. et al. Optimization and scale-up of Wharton's jelly-derived mesenchymal stem cells for clinical applications Stem Cell Research, 2010; 5(3): 244-254. | |
| |
10. Osipova E.Y,. Shamanskaya T.V., Kurakina O.A. et al. Biological Characteristics of Mesenchymal Stem Cells during Ex Vivo Expansion. British Journ. of Medicine & Medical Research, 2011; 1(3): 85-95. | |
| |
11. Park K.H., Kim H., Moon S., Na K. Bone morphogenic protein-2 (BMP-2) loaded nanoparticles mixed with human mesenchymal stem cell in fibrin hydrogel for bone tissue engineering. J. of Biosc. and Bioeng, 2009; 108(6): 530-537. | |
| |
12. Reilly G., Engler A. Intrinsic extracellular matrix properties regulate stem cell differentiation. Journ. of Biomechanics, 2010; 43(1): 55-62. | |
| |
13. Sarkar D., Spencer J.A., Phillips J.A. et al. Engineered cell homing. Blood, 2011; 118(25): 184-191. | |
| |
14. Sensebe L., Bourin P., Tarte K. Good manufacturing practices production of mesenchymal stem/stromal cells. Hum. Gene Ther, 2011; 22(1): 19-26. | |
| |
15. Si Y.L., Zhao Y.L., Hao H.J. et al. MSCs: Biological characteristics, clinical applications and their outstanding concerns. Ageing Res. Rev, 2011; 10(1): 93-103. | |
| |
16. Stephens J., Cooper J., Phelan F., Dunkers J. Perfusion flow bioreactor for 3D in situ imaging: Investigating cell/biomaterials interactions. Biotechnol. Bioeng, 2007; 97: 952-961. | |
| |
17. Taghizadeh R.R., Cetrulo K.J., Cetrulo C.L. Wharton's Jelly stem cells: Future clinical applications. Placenta, 2011; 32(S4): 311-315. | |
| |
18. Tong C. K., Vellasamy S., Tan B. C. Generation of mesenchymal stem cell from human umbilical cord tissue using a combination enzymatic and mechanical disassociation method Cell Biology International, 2011; 35: 221-226. | |
| |
19. Toyoda M., Takahashi H., Umezawa A. Ways for a mesenchymal stem cell to live on its own: maintaining an undifferentiated state ex vivo. Int. J. Hematol, 2007; 86(1): 1-4. | |
| |
20. Valarmathi M.T., Yost M.J., Goodwin R. L., Potts J.D., The influence of proepicardial cells on the osteogenic potential of marrow stromal cells in a three-dimensional tubular scaffold, Biomaterials, 2008; 29(14): 2203-2216. |
Refbacks
- There are currently no refbacks.
Copyright (c) 2012 Studia biologica
This work is licensed under a Creative Commons Attribution 4.0 International License.