DEPENDENCE OF METAL-ACCUMULATIVE CAPACITY IN TISSUES OF THE CRUCIAN CARP CARASSIUS AURATUS GIBELIO UP ON THE HISTORY OF EXPOSURE IN SITU

H. I. Falfushynska, L. L. Gnatyshyna, I. V. Goch, A. E. Mudra, H. V. Deneha, O. I. Goryn, O. B. Stoliar


DOI: http://dx.doi.org/10.30970/sbi.0602.222

Abstract


The effect of copper (0.005 and 0.05 mg×L-1) and manganese ions (0.17 and 1.7 mg×L1), thiocarbamate (Tatoo 9.1 and 91 ug×L-1) and tetrazine (Apollo, 2 and 10 ug×L-1) pesticides on metal content in the tissues of crucian carp Carassius auratus gibelio from two sites, relatively clean (Z) and polluted (B), under exposure during 14 days was studied. In fish from the clean site the copper, zinc, and manganese (in liver) concentration has been higher than in fish from polluted site, whereas cadmium, and manganese (in gills) concentration, was lower. The ratio of essential metals copper, zinc and manganese concentration to nonessential cadmium concentration was twofold higher in tissues of crucian carp from clean site. Significant effect both of site and exposure on the metal concent in the tissues of fish was proved. According to Principal Component Analysis, the difstinctions between the groups of animals from different aquatic bodies under the same substance effect independently of its concentration was proved. Dependence on the concentration of acting substance was revealed only for copper in the gibel carp from polluted site. The concentration of acting metal increased for copper after treatment by 0.005 mg×L-1 (in the giils of fish from group B) and for manganeze after the treatment by 0.17 mg×L-1 (in the liver of fish from group B) and 1.7 mg×L-1 (with exception of gills in fish from group B). The decreasing of the ratio of concentrations of copper, zinc and manganeze to concentration of cadmium was shown in the gills of fish from clean site under all exposures and after the effect of Apollo in all cases. Negative interrrelation was detected by the linear regression analysis for zinc and cadmium content in fish tissues.


Keywords


Carassius auratus gibelio, copper, zinc, manganese, cadmium, pesticides

References


1. Важненко О.В., Єщенко Ю.В., Бовт В.Д., Єщенко В.А. Розвиток дефіциту цинку в гранулоцитах крові під впливом забруднення атмосферного повітря. Питання біоіндикації та екології, 2008; 13(1): 126-132.

2. Линник П.Н. Тяжелые металлы в поверхностных водах Украины: содержание и формы миграции. Гидробиол. журнал, 1999; 35(1): 22-41.

3. Лущак В.І. Біохімічні механізми адаптації видів Carassius до аноксії. Біологія тварин, 2004; 6(1-2): 35-38.

4. Цудзевич Б.О., Столяр О.Б., Калінін І.В., Юкало В.Г. Ксенобіотики: накопичення, детоксикація та виведення з живих організмів: монографія. Тернопіль: Вид-во ТНТУ ім. І. Пулюя, 2012. 384 с.

5. Barceloux D. G. Manganese. J. Toxicol. Clin. Toxicol, 1999; 37(2): 293-307.
https://doi.org/10.1081/CLT-100102427
PMid:10382563

6. Bury N.R., Walker P.A., Glover C.N. Nutritive metal uptake in teleost fish. J. Exp. Biol, 2003; 206(1): 11-23.
https://doi.org/10.1242/jeb.00068
PMid:12456693

7. De Boeck G., Smolders R., Blust R. Copper toxicity in gibel carp Carassius auratus gibelio: importance of sodium and glycogen. Comp. Biochem. Physiol, 2010; 152C(3): 332-337.
https://doi.org/10.1016/j.cbpc.2010.05.008

8. Falfushinska H., Stolyar O. Responses of biochemical markers in carp Cyprinus carpio from two field sites in Western Ukraine. Ecotoxicol. Environ. Saf, 2009; 72(3): 729-736.
https://doi.org/10.1016/j.ecoenv.2008.04.006
PMid:18514900

9. Falfushynska H., Stoliar O. Function of metallothioneins in carp Cyprinus carpio from two field sites in Western Ukraine. Ecotoxicol. Environ. Saf, 2009; 72(5): 1425-1432.
https://doi.org/10.1016/j.ecoenv.2009.02.013
PMid:19356800

10. Falfushynska H.I., Gnatyshyna L.L., Priydun C.V. et al. Variability of responses in the crucian carp Carassius carassius from two Ukrainian ponds determined by multi-marker approach. Ecotoxicol. Environ. Saf, 2010; 73(8): 1896-1906.
https://doi.org/10.1016/j.ecoenv.2010.08.029
PMid:20832861

11. Falfushynska H.I., Gnatyshyna L.L., Stoliar O.B. Population-related molecular responses on the effect of pesticides in Carassius auratus gibelio. Comp. Biochem. Physiol, 2012; 155С(2): 396-406.
https://doi.org/10.1016/j.cbpc.2011.11.001
PMid:22119335

12. Falfushynska H.I., Gnatyshyna L.L., Stoliar O.B., Nam Y.K. Various responses to copper and manganese exposure of Carassius auratus gibelio from two populations. Comp. Biochem. Physiol, 2011; 154С(3): 242-253.
https://doi.org/10.1016/j.cbpc.2011.06.001
PMid:21699996

13. Farombi E.O., Adelowo O.A., Ajimoko R. Biomarkers of oxidative stress and heavy metal levels as indicators of environmental pollution in African cat fish (Clarias gariepinus) from Nigeria Ogun River. Int. J. Environ. Res. Public. Health, 2007; 4: 158-165.
https://doi.org/10.3390/ijerph2007040011
PMid:17617680 PMCid:PMC3728582

14. Gale S.A., Smith S.V., Lim R.P. et al. Insights into the mechanisms of copper tolerance of a population of black-banded rainbowfish (Melanotaenia nigrans) (Richardson) exposed to mine leachate, using 64/67Cu. Aquat. Toxicol, 2003; 62(ИИ): 135-153.
https://doi.org/10.1016/S0166-445X(02)00081-4

15. Hanson P.J. Response of hepatic trace element concentrations in fish exposed to elemental and organic contaminants. Estuaries, 1997; 20: 659-676.
https://doi.org/10.2307/1352242

16. Meyer J.N., Smith J.D., Winston G.W., Di Giulio R.T. Antioxidant defenses in killifish (Fundulus heteroclitus) exposed to contaminated sediments and model prooxidants: short-term and heritable responses. Aquat. Toxicol, 2003; 65(4): 377-395.
https://doi.org/10.1016/j.aquatox.2003.06.001
PMid:14568353

17. Nilsson G.E., Renshaw G.M.C. Hypoxic survival strategies in two fishes: extreme anoxia tolerance in the North European crucian carp and natural hypoxic preconditioning in a coral-reef shark. J. Exp. Biol, 2004; 207(18): 3131-3139.
https://doi.org/10.1242/jeb.00979
PMid:15299034

18. Rainbow P.S., Blackmore G., Wang W.-X. Effects of previous field-exposure history on the uptake of trace metals from water and food by the barnacle Balanus amphitrite. Mar. Ecol. Prog. Ser, 2003; 259: 201-213.
https://doi.org/10.3354/meps259201

19. Stoliar O.B., Lushchak V.I. Environmental Pollution and Oxidative Stress in Fish. In Book: Oxidative Stress - Environmental Induction and Dietary Antioxidants / Ed. Lushchak V. InTech, 2012. 131-166.
https://doi.org/10.5772/2536
PMCid:PMC3303626

20. Stolyar O.B., Loumbourdis N.S., Falfushinska H.I., Romanchuk L.D. Comparison of metal bioavailability in frogs from urban and rural sites of Western Ukraine. Arch. Environ. Contam. Toxicol, 2008; 54(1): 107-113.
https://doi.org/10.1007/s00244-007-9012-6
PMid:17680172

21. Taylor L.N., McFarlane W.J., Pyle G.G. et al. Use of performance indicators in evaluating chronic metal exposure in wild yellow perch (Perca flavescens). Aquat. Toxicol, 2004; 67(4): 371-385.
https://doi.org/10.1016/j.aquatox.2004.01.018
PMid:15084413

22. Wang W.X., Rainbow P. Comparative approaches to understand metal bioaccumulation in aquatic animals. Comp. Biochem. Physiol, 2008; 148C(4): 315-323.
https://doi.org/10.1016/j.cbpc.2008.04.003
PMid:18502695

23. Weis J.S. Tolerance to environmental contaminants in the mummichog, Fundulus heteroclitus. Human Ecol. Risk. Asses, 2002; 8: 933-953.
https://doi.org/10.1080/1080-700291905756


Refbacks

  • There are currently no refbacks.


Copyright (c) 2012 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.