PECULIARITIES OF HEXOSE TRANSPORT AND CATABOLITE REPRESSON REGULATION DY HEXOSE SENSORS HpGcr1 AND HpHxs1 IN THE YEAST HANSENULA POLYMORPHA
DOI: http://dx.doi.org/10.30970/sbi.0602.218
Abstract
In the yeasts, as in the majority of microorganisms, glucose is the main source of carbon and energy, as well as a key effector molecule involved in transcriptional regulation. Many genes are repressed in the presence of glucose, others are instead induced by glucose. In the mutants of bakers’ yeast Sacharomyces cerevisiae impaired in hexose transport, the proficiency of transport determins the strength of the repression signal. In the mutants of methylotrophic yeast Hansenula polymorpha with deleted glucose sensors НрGcr1 and НрHxs1, efficiency of glucose and fructose uptake and the effect of hexose transport on catabolite repression of peroxisomal alcohol oxidase was investigated. Contrary to S. cerevisiae, in the mutants ∆gcr1 and ∆hxs1 impairment glucose and fructose transport did not always corelated with the rate of catabolite repression of metabolic genes of alternative carbon sources. For instance, in the recessive gcr1-2 mutant with one amino acid substitution S85F glucose transport was less impaired relative to corresponding deletion mutant, whereas defect of glucose repression was more pronounced. Also, in the mutants ∆hxs1 and ∆gcr1, the defect of fructose transport was similar, when fructose repression defect was stronger in ∆hxs1. Therefore, specific impairment of hexose transport upon deletion of alternative hexose sensors in H. polymorpha is not an only cause that determins profiociency of hexose catabolite repression.
Keywords
Full Text:
PDF (Українська)References
1. Гончар М.В., Сибірний А.А. Методичні вказівки до виконання лабораторних робіт з великого практикуму для студентів IV курсу біологічного факультету ЛДУ. - Львів: ЛДУ ім. І. Франка, 1995. - 23 с. | |
| |
2. Стасык О.В., Кшеминская Г.П., Кулачковский А.Р. та ін. Мутанты метилотрофных дрожжей Hansenula polymorpha с поврежденной катаболитной репрессией. Микробиология, 1997; 66: 755-760. | |
| |
3. Berkey C.D., Vyas V.K., Carlson M. Nrg1 and Nrg2 transcriptional repressors are differently regulated in response to carbon source. Eukar. Cell, 2004; 3: 311-317. | |
| |
4. Betina S., Goffrini P., Ferrero I. et al. RAG4 gene encodes a glucose sensor in Kluyveromyces lactis. Genetics, 2001; 158: 541-548. | |
| |
5. Bisson L.F., Kunathigan V. On the trail of an elusive flux sensor. Res. Microbiol, 2003; 154: 603-610. | |
| |
6. Boles E., Hollenberg C.P. The molecular genetics of hexose transport in yeasts. FEMS Microbiol. Rev, 1997; 21: 85-111. | |
| |
7. Brown V., Sexton J., Johnston M. A glucose sensor in Candida albicans. Eukar. Cell, 2006; 5(10): 1726-1737. | |
| |
8. Faber K.N., Haima P., Harder W. et al. Highly-efficient electrotransformation of the yeast Hansenula polymorpha. Curr. Genet, 1994; 25: 305-310. | |
| |
9. Hartner F., Glieder A. Regulation of methanol utilisation pathway genes in yeasts. Microbial Cell Factories, 2006; 5(39): 1-21. | |
| |
10. Karp H., Alamae T. Glucose transport in a methylotrophic yeast Hansenula polymorpha. FEMS Microbiol. Lett, 1998; 166: 267-273. | |
| |
11. Krasovska O.S., Stasyk O.G., Nahorny V.O. et al. Glucose-induced production of recombinant proteins in Hansenula polymorpha mutants deficient in catabolite repression. Biotech. Bioeng, 2007; 97(4): 858-870. | |
| |
12. Madi L., McBride S.A., Bailey L.A. et al. rco-3, a gene involved in glucose transport and conidiation in Neurospora crassa. Genetics, 1997; 146(2): 499-508. | |
| |
13. Ozcan S., Dover J., Johnston M. Glucose sensing and signaling by two glucose receptors in the yeast S. cerevisiae. EMBO J, 1998; 17: 2566-2573. | |
| |
14. Parpinello G., Berardi E., Strabbioli R. A regulatory mutant of Hansenula polymorpha exhibiting methanol utilization metabolism and peroxisome proliferation in glucose. J. Bacteriol, 1998; 180(11): 2958-2967. | |
| |
15. Reifenberger E., Boles E., Ciriacy M. Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression. Eur. J. Biochem, 1997; 245: 324-333. | |
| |
16. Sohn J. H., Choi E. S., Kang H. A. et al. A dominant selection system designed for copy-number-controlled gene integration in Hansenula polymorpha DL-1. Appl. Microbiol. Biotechnol, 1999; 51: 800-807. | |
| |
17. Stasyk O.V., Petryshyn A.V., Sibirny A.A. Impairment of glucose uptake as a possible cause of catabolite repression deficiency in mutants of methylotrophic yeast Hansenula polymorpha. Folia Microbiol, 1994; 39: 545-546. | |
| |
18. Stasyk O.V., Stasyk O.G., Komduur J. et al. A hexose transporter homologue controls glucose repression in the methylotrophic yeast Hansenula polymorphа. J. Biol. Chem, 2004; 279(9): 8116-8125. | |
| |
19. Stasyk O.G., Maidan M.M., Stasyk O.V. et al. Identification of hexose transporter-like sensor HXS1 and functional hexose transporter HXT1 in the methylotrophic yeast Hansenula polymorpha. Eukar. Cell, 2008; 7(4): 735-746. | |
| |
20. Walsh E.P., Lamont D.J., Beattie K.A. et al. Novel interactions of Saccharomyces cerevisiae type 1 protein phosphatase identified by single-step affinity purification and mass spectrometry. Biochem, 2002; 41: 2409-2420. | |
| |
21. Waterham H.R., Titorenko V.I., Haima P. et al. The Hansenula polymorpha PER1 gene is essential for peroxisome biogenesis and encodes a peroxisomal matrix protein with both carboxy and amino-terminal targeting signals. J. Cell Biol, 1994; 127: 737-749. |
Refbacks
- There are currently no refbacks.
Copyright (c) 2012 Studia biologica
This work is licensed under a Creative Commons Attribution 4.0 International License.