PECULIARITIES OF HEXOSE TRANSPORT AND CATABOLITE REPRESSON REGULATION DY HEXOSE SENSORS HpGcr1 AND HpHxs1 IN THE YEAST HANSENULA POLYMORPHA

O. G. Stasyk, I. O. Denega, N. I. Klymyshyn, N. O. Sybirna, O. V. Stasyk


DOI: http://dx.doi.org/10.30970/sbi.0602.218

Abstract


In the yeasts, as in the majority of microorganisms, glucose is the main source of carbon and energy, as well as a key effector molecule involved in transcriptional regulation. Many genes are repressed in the presence of glucose, others are instead induced by glucose. In the mutants of bakers’ yeast Sacharomyces cerevisiae impaired in hexo­se transport, the proficiency of transport determins the strength of the repression signal. In the mutants of methylotrophic yeast Hansenula polymorpha with deleted glucose sensors НрGcr1 and НрHxs1, efficiency of glucose and fructose uptake and the effect of hexose transport on catabolite repression of peroxisomal alcohol oxidase was investigated. Contrary to S. cerevisiae, in the mutants ∆gcr1 and ∆hxs1 impairment glucose and fructose transport did not always corelated with the rate of catabolite repression of metabolic genes of alternative carbon sources. For instance, in the recessive gcr1-2 mutant with one amino acid substitution S85F glucose transport was less impaired relative to corresponding deletion mutant, whereas defect of glucose repression was more pronounced. Also, in the mutants ∆hxs1 and ∆gcr1, the defect of fructose transport was similar, when fructose repression defect was stronger in ∆hxs1. Therefore, specific impairment of hexose transport upon deletion of alternative hexose sensors in Hpolymorpha is not an only cause that determins profiociency of hexose catabolite repression.


Keywords


methylotrophic yeasts, Hansenula polymorpha, transporter-like sensors, glucose repression, hexose transport

References


1. Гончар М.В., Сибірний А.А. Методичні вказівки до виконання лабораторних робіт з великого практикуму для студентів IV курсу біологічного факультету ЛДУ. - Львів: ЛДУ ім. І. Франка, 1995. - 23 с.

2. Стасык О.В., Кшеминская Г.П., Кулачковский А.Р. та ін. Мутанты метилотрофных дрожжей Hansenula polymorpha с поврежденной катаболитной репрессией. Микробиология, 1997; 66: 755-760.

3. Berkey C.D., Vyas V.K., Carlson M. Nrg1 and Nrg2 transcriptional repressors are differently regulated in response to carbon source. Eukar. Cell, 2004; 3: 311-317.
https://doi.org/10.1128/EC.3.2.311-317.2004
PMid:15075261 PMCid:PMC387646

4. Betina S., Goffrini P., Ferrero I. et al. RAG4 gene encodes a glucose sensor in Kluyveromyces lactis. Genetics, 2001; 158: 541-548.

5. Bisson L.F., Kunathigan V. On the trail of an elusive flux sensor. Res. Microbiol, 2003; 154: 603-610.
https://doi.org/10.1016/S0923-2508(03)00170-0

6. Boles E., Hollenberg C.P. The molecular genetics of hexose transport in yeasts. FEMS Microbiol. Rev, 1997; 21: 85-111.
https://doi.org/10.1111/j.1574-6976.1997.tb00346.x
PMid:9299703

7. Brown V., Sexton J., Johnston M. A glucose sensor in Candida albicans. Eukar. Cell, 2006; 5(10): 1726-1737.
https://doi.org/10.1128/EC.00186-06
PMid:17030998 PMCid:PMC1595344

8. Faber K.N., Haima P., Harder W. et al. Highly-efficient electrotransformation of the yeast Hansenula polymorpha. Curr. Genet, 1994; 25: 305-310.
https://doi.org/10.1007/BF00351482
PMid:8082173

9. Hartner F., Glieder A. Regulation of methanol utilisation pathway genes in yeasts. Microbial Cell Factories, 2006; 5(39): 1-21.
https://doi.org/10.1186/1475-2859-5-39
PMid:17169150 PMCid:PMC1781073

10. Karp H., Alamae T. Glucose transport in a methylotrophic yeast Hansenula polymorpha. FEMS Microbiol. Lett, 1998; 166: 267-273.
https://doi.org/10.1016/S0378-1097(98)00342-5

11. Krasovska O.S., Stasyk O.G., Nahorny V.O. et al. Glucose-induced production of recombinant proteins in Hansenula polymorpha mutants deficient in catabolite repression. Biotech. Bioeng, 2007; 97(4): 858-870.
https://doi.org/10.1002/bit.21284
PMid:17163508

12. Madi L., McBride S.A., Bailey L.A. et al. rco-3, a gene involved in glucose transport and conidiation in Neurospora crassa. Genetics, 1997; 146(2): 499-508.

13. Ozcan S., Dover J., Johnston M. Glucose sensing and signaling by two glucose receptors in the yeast S. cerevisiae. EMBO J, 1998; 17: 2566-2573.
https://doi.org/10.1093/emboj/17.9.2566
PMid:9564039 PMCid:PMC1170598

14. Parpinello G., Berardi E., Strabbioli R. A regulatory mutant of Hansenula polymorpha exhibiting methanol utilization metabolism and peroxisome proliferation in glucose. J. Bacteriol, 1998; 180(11): 2958-2967.

15. Reifenberger E., Boles E., Ciriacy M. Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression. Eur. J. Biochem, 1997; 245: 324-333.
https://doi.org/10.1111/j.1432-1033.1997.00324.x
PMid:9151960

16. Sohn J. H., Choi E. S., Kang H. A. et al. A dominant selection system designed for copy-number-controlled gene integration in Hansenula polymorpha DL-1. Appl. Microbiol. Biotechnol, 1999; 51: 800-807.
https://doi.org/10.1007/s002530051465
PMid:10422227

17. Stasyk O.V., Petryshyn A.V., Sibirny A.A. Impairment of glucose uptake as a possible cause of catabolite repression deficiency in mutants of methylotrophic yeast Hansenula polymorpha. Folia Microbiol, 1994; 39: 545-546.
https://doi.org/10.1007/BF02814101

18. Stasyk O.V., Stasyk O.G., Komduur J. et al. A hexose transporter homologue controls glucose repression in the methylotrophic yeast Hansenula polymorphа. J. Biol. Chem, 2004; 279(9): 8116-8125.
https://doi.org/10.1074/jbc.M310960200
PMid:14660581

19. Stasyk O.G., Maidan M.M., Stasyk O.V. et al. Identification of hexose transporter-like sensor HXS1 and functional hexose transporter HXT1 in the methylotrophic yeast Hansenula polymorpha. Eukar. Cell, 2008; 7(4): 735-746.
https://doi.org/10.1128/EC.00028-08
PMid:18310355 PMCid:PMC2292620

20. Walsh E.P., Lamont D.J., Beattie K.A. et al. Novel interactions of Saccharomyces cerevisiae type 1 protein phosphatase identified by single-step affinity purification and mass spectrometry. Biochem, 2002; 41: 2409-2420.
https://doi.org/10.1021/bi015815e
PMid:11841235

21. Waterham H.R., Titorenko V.I., Haima P. et al. The Hansenula polymorpha PER1 gene is essential for peroxisome biogenesis and encodes a peroxisomal matrix protein with both carboxy and amino-terminal targeting signals. J. Cell Biol, 1994; 127: 737-749.
https://doi.org/10.1083/jcb.127.3.737
PMid:7962056


Refbacks

  • There are currently no refbacks.


Copyright (c) 2012 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.