SEARCH FOR AND IDENTIFICATION OF MOLECULAR TARGETS OF ANGUCYCLINE ANTIBIOTIC LANDOMYCIN E IN HUMAN TUMOR CELLS

R. R. Panchuk, L. V. Lehka, B. P. Matselyukh, I. Y. Kril’, R. S. Stoika


DOI: http://dx.doi.org/10.30970/sbi.0601.194

Abstract


Study of cellular and molecular mechanisms of anticancer activity of novel perspective angucycline antibiotic landomycin E was carried out. It was revealed that this compound uses mechanisms of apoptosis induction in tumor cells that differ from such mechanisms used by structurally related drug doxorubicin which is widely applied in clinics. In particular, landomycin E blocks cells in G1 phase of cell cycle, and this action is mediated by the reactive oxygen species. Such G1-specificity of landomycin E action of can be of great importance in chemotherapy, since it is known that cancer stem cells which are responsible for recurrent tumors, are staying mainly in G0/G1 phase, and, thus, are insensitive to most anticancer drugs. Application of Western-blot analysis for studying potential intracellular targets of the landomycin E action allowed identifying procaspase-7 as a targeted effector apoptotic protein. There are no other cases of direct activation of this enzyme by the anticancer drugs described in literature till now. Thus, such a unique mechanism of anticancer activity might allow landomycin E to kill tumor cells effectively even in the absence of other key enzymes involved in apoptosis, such as caspase-3. Taking into consideration high antineoplastic potential of landomycin E and unique mechanism of its action, this antibiotic could be recommended as anticancer drug of second line defense at treatment of cancer patients.


Keywords


anticancer drugs, tumor drug resistance, landomycin E, apoptosis, cell cycle

References


1. Мацелюх Б.П., Лаврінчук В.Я. Одержання і характеристика мутантів Streptomyces globisporus 1912, дефектних по біосинтезу ландоміцину Е. Мікробіол журн, 1999; 61: 22-27.

2. Панчук Р., Кориневська А., Осташ Б. та ін. Дослідження механізмів дії ландоміцину Е на клітини ссавців. Вісн. Львів. ун-ту. Сер. біол, 2004; 35: 54-59.

3. Поліщук Л.В., Ганусевич І.І., Мацелюх Б.П. Вивчення протипухлинної дії антибіотиків, що продукуються Streptomyces globisporus 1912, на моделі карциноми Ґерена щурів. Мікробіол журн, 1996; 58: 55-58.

4. Фільченков О.О., Стойка Р.С. Апоптоз і рак: від теорії до практики. Тернопіль: ТДМУ "Укрмедкнига", 2006. - 524 с.

5. Henkel T., Rohr J., Beale J.M., Schwenen L. Landomycins, new angucycline antibiotics from Streptomyces sp. I. structural studies on landomycins A-D. J. Antibiot, 1990; 43: 492-503.
https://doi.org/10.7164/antibiotics.43.492
PMid:2358402

6. Kamohara Y., Haraguchi N., Mimori K. et al. The search for cancer stem cells in hepatocellular carcinoma. Surgery, 2008; 144(2): 119-124.
https://doi.org/10.1016/j.surg.2008.04.008
PMid:18656616

7. Kim R., Tanabe K., Uchida Y. et al. Current status of the molecular mechanisms of anticancer drug-induced apoptosis. The contribution of molecular-level analysis to cancer chemotherapy. Cancer Chemother Pharmacol, 2002; 50(5): 343-352.
https://doi.org/10.1007/s00280-002-0522-7
PMid:12439591

8. Korynevska A., Heffeter P., Matselyukh B. et al. Mechanisms underlying the anticancer activities of the angucycline landomycin E. Biochem. Pharmacol, 2007; 74(12): 1713-1726.
https://doi.org/10.1016/j.bcp.2007.08.026
PMid:17904109

9. Korynevska A.V., Matselyukh B.P., Stoika R.S. In vitro study of landomycin E antitumor activity. Експеримент. онкологія, 2003; 25: 98-105.

10. Laemmli U. Cleavage of structural protein during the assembly of the head of bacteriofage T4. Nature, 1970; 227: 680-684.
https://doi.org/10.1038/227680a0
PMid:5432063

11. Ling Y.H., el-Naggar A.K., Priebe W., Perez-Soler R. Cell cycle-dependent cytotoxicity, G2/M phase arrest, and disruption of p34cdc2/cyclin B1 activity induced by doxorubicin in synchronized P388 cells. Mol. Pharmacol, 1996; 49(5): 832-841.

12. Luzhetskyy A., Zhu L., Gibson M. et al. Generation of novel landomycins M and O through targeted gene disruption. Chembiochem, 2005; 6(4): 675-678.
https://doi.org/10.1002/cbic.200400316
PMid:15812784

13. Newman D.J., Cragg G.M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod, 2007; 70(3): 461-477.
https://doi.org/10.1021/np068054v
PMid:17309302

14. Panchuk R.R. Signaling pathways involved in apoptosis induced by novel angucycline antibiotic landomycin E in Jurkat T leukemia cells. Biopolymers and Cell, 2011; 27(2): 124-131.
https://doi.org/10.7124/bc.00008B

15. Peterson G.L. А simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal. Biochemistry, 1977; 83(2): 346-358.
https://doi.org/10.1016/0003-2697(77)90043-4

16. Rohr J., Hertweck C. Comprehensive Natural Products II−Chemistry and Biology; Mander, L. and Liu, H.-W., Eds.; Elsevier: Oxford. 2010; 1: 227-303.
https://doi.org/10.1016/B978-008045382-8.00703-6

17. Rohr J., Thiericke R. Angucycline group antibiotics. Nat. Prod. Rep, 1992; 9: 103-137.
https://doi.org/10.1039/np9920900103
PMid:1620493

18. Toyoshima H., Hunter T. p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell, 1994; 15: 78(1): 67-74.
https://doi.org/10.1016/0092-8674(94)90573-8

19. Vakifahmetoglu-Norberg H., Zhivotovsky B. The unpredictable caspase-2: what can it do? Trends Cell Biol, 2010; 20(3: 150-159.
https://doi.org/10.1016/j.tcb.2009.12.006
PMid:20061149

20. Warr M.R., Shore G.C. Small-molecule Bcl-2 antagonists as targeted therapy in oncology. Curr. Oncol, 2008; 15(6): 256-261.
https://doi.org/10.3747/co.v15i6.392

21. Zhukov N.V., Tjulandin S.A. Targeted therapy in the treatment of solid tumors: practice contradicts theory. Biochemistry (Mosc), 2008; 73(5): 605-618.
https://doi.org/10.1134/S000629790805012X


Refbacks

  • There are currently no refbacks.


Copyright (c) 2012 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.