CEREBROLYSIN® INFLUENCES IN Sod- AND sws-DEPENDENT NEURODEGENERATIVE MODELS OF DROSOPHILA MELANOGASTER

Nataliya Matiytsiv, Anastasiia Raspopina, Khrystyna Dronska, Zoryana Novosiadla


DOI: http://dx.doi.org/10.30970/sbi.1702.708

Abstract


Background. The incidence of human neurodegenerative disorders increases continuously as the human population ages. To date, these diseases remain incurable and require complex experimental approaches using tractable models to study the degeneration mechanisms and potential drug intervention regimens. In the current work, we assessed the impact of the neuroprotective drug Сerebrolysin on these neurodegenerative processes in Drosophila Sod1 and swiss cheese (sws) mutants.
Materials and Methods. The experiments were conducted using a D. melano­gaster Sod1- and sws-dependent neurodegeneration model. Сerebrolysin (3 μL/mL) was added for larvae feeding. In order to evaluate Сerebrolysin influence, several tests were performed: locomotor activity assay, lifespan, size of brain tissue degeneration zones and sensitivity to prooxidant exposion.
Results. Dietary supplementation with Сerebrolysin extended the lifespan of all flies under normal circumstances. The drug treatment also reduced the sensitivity of mutant flies to pro-oxidant effects. Moreover, treatment with Сerebrolysin partially diminished the size of degeneration zones in the brain tissue of sws1 mutant flies, without any notable effects on locomotor ability.
Conclusions. The data obtained confirm the moderate neuroprotective and/or antioxidant action of Сerebrolysinagainst neurodegenerative processes under different genetic backgrounds.


Keywords


neurodegeneration, Сerebrolysin, lifespan, behavior, Cu-Zn superoxide dismutase Sod1, swiss cheese genes

Full Text:

PDF

References


Alzheimer's Drug Discovery Foundation, Сerebrolysin (2016). New York. Retrieved from https://www.alzdiscovery.org/uploads/cognitive_vitality_media/addf-cerebrolysin-full-report.pdf

Ashburner, M. (1989). Drosophila. A laboratory manual. New York: Cold Spring Harbor Laboratory Press.
Google Scholar

Benzer, S. (1973). Genetic dissection of behavior. Scientific American, 229(6), 24-37. doi:10.1038/scientificamerican1273-24
CrossrefPubMedGoogle Scholar

Celotto, A. M., Liu, Z., VanDemark, A. P., & Palladino, M. J. (2012). A novel Drosophila SOD2 mutant demonstrates a role for mitochondrial ROS in neurodevelopment and disease. Brain and Behavior, 2(4), 424-434. doi:10.1002/brb3.73
CrossrefPubMedPMCGoogle Scholar

Deal, S. L., & Yamamoto, S. (2019). Unraveling novel mechanisms of neurodegeneration through a large-scale forward genetic screen in Drosophila. Frontiers in Genetics, 9, 700. doi:10.3389/fgene.2018.00700
CrossrefPubMedPMCGoogle Scholar

Durães, F., Pinto, M., & Sousa, E. (2018). Old drugs as new treatments for neurodegenerative diseases. Pharmaceuticals (Basel, Switzerland), 11(2), 44. doi:10.3390/ph11020044
CrossrefPubMedPMCGoogle Scholar

Greene, J. C., Whitworth, A. J., Kuo, I., Andrews, L. A., Feany, M. B., & Pallanck, L. J. (2003). Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proceedings of the National Academy of Sciences, 100(7), 4078-4083. doi:10.1073/pnas.073755610
CrossrefPubMedPMCGoogle Scholar

Heisenberg, M., & Böhl, K. (1979). Isolation of anatomical brain mutants of Drosophila by histological means. Zeitschrift Für Naturforschung C, 34(1-2), 143-147. doi:10.1515/znc-1979-1-228
CrossrefGoogle Scholar

Kretzschmar, D., Hasan, G., Sharma, S., Heisenberg, M., & Benzer, S. (1997). The swiss cheese mutant causes glial hyperwrapping and brain degeneration in Drosophila. The Journal of Neuroscience, 17(19), 7425-7432. doi:10.1523/jneurosci.17-19-07425.1997
CrossrefPubMedPMCGoogle Scholar

Lucas, B., Pinkernelle, J., Fansa, H., & Keilhoff, G. (2014). Effects of cerebrolysin on rat Schwann cells in vitro. Acta Histochemica, 116(5), 820-830. doi:10.1016/j.acthis.2014.01.013
CrossrefPubMedGoogle Scholar

Matiytsiv, N. P., Dronska, K. A., Artymovych, N. M., Makarenko, A. M., & Chernik, Ya. I. (2015). Therapeutic effect of cerebral on neurodegeneration caused by altered functioning of swiss cheese gene in Drosophila melanogaster. Studia Biologica, 9(2), 99-106 doi:10.30970/sbi.0902.406 (In Ukrainian)
CrossrefGoogle Scholar

Matiytsiv, N. P, Mohylyak, I. I., Truhs, O. I., Chernyk, Y. I. (2013). Rukhova aktyvnist neirodeheneratyvnykh mutantiv Drosophila melanogaster [Motor activity of Drosophila melanogaster neurodegenerative mutants]. Odesa National University Herald. Biology, 2(31), 70-76. doi:10.18524/2077-1746.2013.2(31).44771 (In Ukrainian)
CrossrefGoogle Scholar

Mohylyak, I. I., Matiytsiv, N. P., Hrunyk, N. I., & Chernyk, Ya. I. (2011). Sensitivity of neurodegenerative mutants of Drosophila melanogaster from Swiss cheese group to the oxidative stress conditions. Biopolymers and Cell, 27(6), 453-458. doi:10.7124/bc.000117
CrossrefGoogle Scholar

Mohylyak, I. I., & Chernyk, Ya. I. (2017). Functioning of glia and neurodegeneration in Drosophila melanogaster. Cytology and Genetics, 51(3), 202-213. doi:10.3103/s0095452717030094
CrossrefGoogle Scholar

Pandey, U. B., & Nichols, C. D. (2011). Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacological Reviews, 63(2), 411-436. doi:10.1124/pr.110.003293
CrossrefPubMedPMCGoogle Scholar

Ryabova, E., Matiytsiv, N., Trush, O., Mohylyak, I., Kislik, G., Melentev, P., & Sarantseva, S. (2018). Swiss cheese, Drosophila ortholog of hereditary spastic paraplegia gene NTE, maintains neuromuscular junction development and microtubule network. In F. K. Perveen (Ed.), Drosophila melanogaster - model for recent advances in genetics and therapeutics (pp. 209-225). Rijeka, Croatia: IntechOpen. doi:10.5772/intechopen.73077
CrossrefGoogle Scholar

Schauer, E., Wronski, R., Patockova, J., Moessler, H., Doppler, E., Hutter-Paier, B., & Windisch, M. (2006). Neuroprotection of Cerebrolysin in tissue culture models of brain ischemia: post lesion application indicates a wide therapeutic window. Journal of Neural Transmission, 113(7), 855-868. doi:10.1007/s00702-005-0384-3
CrossrefPubMedGoogle Scholar

Skorupa, D. A., Dervisefendic, A., Zwiener, J., & Pletcher, S. D. (2008). Dietary composition specifies consumption, obesity, and lifespan in Drosophila melanogaster. Aging Cell, 7(4), 478-490. doi:10.1111/j.1474-9726.2008.00400.x
CrossrefPubMedPMCGoogle Scholar

Tharwat, E. K., Abdelaty, A. O., Abdelrahman, A. I., Elsaeed, H., Elgohary, A., El-Feky, A. S., Ebrahim, Y. M., Sakraan, A., Ismail, H. A., Khadrawy, Y. A., Aboul Ezz, H. S., Noor, N. A., Fahmy, H. M., Mohammed, H. S., Mohammed, F. F., Radwan, N. M., & Ahmed, N. A. (2023). Evaluation of the therapeutic potential of cerebrolysin and/or lithium in the male Wistar rat model of Parkinson's disease induced by reserpine. Metabolic Brain Disease. doi:10.1007/s11011-023-01189-4
CrossrefPubMedGoogle Scholar

Vitushynska, M., Matiytsiv, N., & Chernyk, Ya. (2013). Chutlyvist do umov oksydatyvnoho stresu, tryvalist zhyttia ta neirodeheneratyvni zminy v strukturi mozku u mutantiv Drosophila melanogaster za henamy superoksyddysmutazy [Sensitivity to the oxidative stress conditions lifespan and neurodegenerative changes in the brain structure of Drosophila melanogaster superoxiddismutase mutants]. Visnyk of the Lviv University. Series Biology, 62, 108-116. (In Ukrainian)
Google Scholar
Vitushynska, M. V., Matiytsiv, N. P., & Chernyk, Y. I. (2015). Influence of tissue-specific superoxide dismutase gene expression in brain cells on Drosophila melanogaster sensitivity to oxidative stress and viability. Cytology and Genetics, 49(2), 95-101. doi:10.3103/s0095452715020127
CrossrefPubMedGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Nataliya Matiytsiv, Anastasiia Raspopina, Khrystyna Dronska, Zoryana Novosiadla

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.