INFLUENCE OF CALIXARENE C-90 ON CONTRACTILE ACTIVITY OF RAT MYOMETRIUM SMOOTH MUSCLES

O. V. Tsymbalyuk, S. O. Kosterin


DOI: http://dx.doi.org/10.30970/sbi.0703.298

Abstract


It is known that calix[4]arene with cipher C-90 selectively and with high affinity inhibits Ca2+,Mg2+-ATPase of smooth muscle cells plasma membrane preparations. The work wis devoted to investigation of the influence of calixarene C-90 (10 µM) on spontaneous and induced (high-potassium solution and oxytocin) contractions of rat uterus longitudinal smooth muscles. Contractile activity was studied tensometrically in the isometric mode, analysis of the kinetic properties of contractions was performed by the calculation of the normalized maximal velocity of contraction (Vnс) and relaxation (Vnr) phases. Calixarene C-90 changed the spontaneous contractile activity, causing a decrease in amplitude and has no significant effect on the frequency, while slowing down of the relaxation phase of individual contractions (decreasing parameter Vnr) occurred. In the presence of non-selective NO-synthase inhibitor L-NAME (100 µM), calixarene C-90 did not cause a reduction of the amplitude of spontaneous contractions and the speed of relaxation phase returned to the control level. Furthermore, calixarene C-90 was equally contributing factor to reduced force of both oxytocin-induced (0.1 IU) and K+-induced (80 mM) contractions without affecting the nature of the increase in contractile force responses (normalized maximal velocity of contraction phase stayed at control level). The relaxation velocity of caused contractions recieved opposite changes depending on the nature of the contractile stimulation: in case of oxytocin-evoked contractions – decreased, while for K+-induced contractions – increased. In the presence of L-NAME calixarene C-90 did not cause inhibition of the maximal force K+- and oxytocin-induced contractions, but evoked changes in the kinetical para­meters of contractile responses (decrease Vnr). Thus, blocking of NO synthesis resulted in the removal of inhibiting both spontaneous and evoked contractions of smooth muscle myometrium under the influence of calixarene C-90. These results suggest that inhibition force of uterus smooth muscle contractions under the influence of calixarene C-90 is by NO-dependent way, whereas slow relaxation (decrease in normalized maximal velocity Vnr) is caused by the inhibition of Ca2+-transport function of the plasma membrane calcium pump.


Keywords


smooth muscle, uterus, contraction, kinetical parameters, calixarene C-90, plasma membrane calcium pump, nitric oxide

References


1. Данилович Ю.В. Оксид азоту як регулятор внутрішньоклітинного кальцієвого гомеостазу в міоцитах матки. Укр. біохім. журнал, 2012; 84(3): 5-25.

2. Лабинцева Р.Д., Слінченко Н.М., Векліч Т.О. та ін. порівняльне дослідження впливу каліксаренів на Mg2+-залежні атр-гідролазні ферментативні системи гладеньком'язових клітин матки. Укр. біохім. журнал, 2007; 79(3): 44-54.

3. Brian O., Paul R.J. Ca2+ clearance and contractility in vascular smooth muscle: evidence from gene-altered murine models. J. Mol. Cell. Cardiol, 2008; 45(3): 347-362.
https://doi.org/10.1016/j.yjmcc.2008.05.024
PMid:18598701 PMCid:PMC2587493

4. Brini M., Carafoli E. The plasma membrane Ca2+ ATPase and the plasma membrane sodium calcium exchanger cooperate in the regulation of cell calcium. Cold Spring Harb. Perspect. Biol, 2011: 1-15.
https://doi.org/10.1101/cshperspect.a004168
PMid:21421919 PMCid:PMC3039526

5. Brown A., Cornwell T., Korniyenko I. et al. Myometrial expression of small conductance Ca2+-activated K+ channels depresses phasic uterine contraction. Am. J. Physiol. Cell. Physiol, 2007; 292: C832-C840.
https://doi.org/10.1152/ajpcell.00268.2006
PMid:17296820

6. Burdyga Th.V., Kosterin S.A. Kinetic analysis of smooth muscle relaxation. Gen. Physiol. Biophys, 1991; 10: 589-598.

7. Carrera C., Proverbio T., Marin R., Proverbio F. Ca-ATPase of human myometrium plasma membranes. Physiol. Res, 2000; 49: 331-338.

8. Chaud M., Franchi A.M., Rettori V. et al. Nitric oxide in the contractile action of bradykinin, oxytocin, and prostaglandin F2α in the estrogenized rat uterus. Proc. Natl. Acad. Sci, 1997; 94: 11049-11054.
https://doi.org/10.1073/pnas.94.20.11049
PMid:9380757 PMCid:PMC23588

9. Chaudhary J., Walia M., Matharu J. et al. Caloxin: a novel plasma membrane Ca21 pump inhibitor. Am. J. Physiol. (Cell Physiol.), 2001; 280: C1027-C1030.
https://doi.org/10.1152/ajpcell.2001.280.4.C1027
PMid:11245619

10. El-Yazbi A.F., Cho W. J., Schulz R., Daniel E.E. Calcium extrusion by plasma membrane calcium pump is impaired in caveolin-1knockout mouse small intestine. Eur. J. Pharmacol, 2008; 591: 80-87.
https://doi.org/10.1016/j.ejphar.2008.06.098
PMid:18634779

11. Ferdek P.E., Gerasimenko J.V., Peng S. et al. A Novel Role for Bcl-2 in regulation of cellular calcium extrusion. Cur. Biol, 2012; 22(13): 1241-1246.
https://doi.org/10.1016/j.cub.2012.05.002
PMid:22704985 PMCid:PMC3396842

12. Grover A.K., Khan I. Calcium pump isoforms: diversity, selectivity and plasticity. Cell Сalcium, 1992; 13: 9-17.
https://doi.org/10.1016/0143-4160(92)90025-N

13. Hennan J.K., Diamond J. Evidence that spontaneous contractile activity in the rat myometrium is not inhibited by NO-mediated increases in tissue levels of cyclic GMP. Br. J. Pharm, 1998; 123: 959-967.
https://doi.org/10.1038/sj.bjp.0701678
PMid:9535026 PMCid:PMC1565234

14. Hering S., Berjukow S., Sokolov S. et al. Molecular determinants of inactivation in voltagegated Ca2+ channels. J. Physiol, 2000; 528(2): 237-249.
https://doi.org/10.1111/j.1469-7793.2000.t01-1-00237.x
PMid:11034614 PMCid:PMC2270139

15. Hoffmann P., Stanke-Labesque F., Fanchin R. et al. Effects of L-arginine and sodium nitroprusside on the spontaneous contractility of human non-pregnant uterus. Hum. Reprod, 2003; 18(1): 148-151.
https://doi.org/10.1093/humrep/deg025
PMid:12525457

16. Holton M.L., Wang W., Emerson M. et al. Plasma membrane calcium ATPase proteins as novel regulators of signal transduction pathways. World J. Biol. Chem, 2010; 1(6): 201-208.
https://doi.org/10.4331/wjbc.v1.i6.201
PMid:21537369 PMCid:PMC3083965

17. Ishida Y., Paul R.J. Ca2+ clearance in smooth muscle: lessons from gene-altered mice. J. Smooth Muscle Res, 2005; 41(5): 235-245.
https://doi.org/10.1540/jsmr.41.235
PMid:16428863

18. Khan R.N., Matharoo-Ball B., Arulkumaran S., Ashford M.L.J. Potassium channels in the human myometrium. Exp. Physiol, 2001; 86(2): 255-264.
https://doi.org/10.1113/eph8602181
PMid:11429642

19. Kosterin S.A. Mechanisms of Ca2+ transport in myometrium / Chapter 6. Eds. By R.E. Garfield, T.N. Tabb. CRC Press, Boca Raton, Ann Arbor, London, Tokyo. 1994.

20. Liu L., Ishida Y., Okunade G. et al. Distinct roles of PMCA isoforms in Ca2+ homeostasis of bladder smooth muscle: evidence from PMCA gene-ablated mice. Am. J. Physiol. Cell. Physiol, 2007; 292: C423-C431.
https://doi.org/10.1152/ajpcell.00313.2006
PMid:16956963

21. Liu L., Ishida Y., Okunade G. et al. Role of plasma membrane Ca2+-ATPase in contraction-relaxation processes of the bladder: evidence from PMCA gene-ablated mice. Am. J. Physiol. Cell Physiol, 2006; 290: C1239-C1247.
https://doi.org/10.1152/ajpcell.00440.2005
PMid:16291816

22. Matthew A., Shmygol A., Wray S. Ca2+ entry, efflux and release in smooth muscle. Biol. Res, 2004; 37: 617-624.
https://doi.org/10.4067/S0716-97602004000400017
PMid:15709690

23. Mohamed T.M.A., Oceandy D., Zi M. et al. Plasma membrane calcium pump (PMCA4)-neuronal nitric-oxide synthase complex regulates cardiac contractility through modulation of a compartmentalized cyclic nucleotide microdomain. J. Biol. Chem, 2011; 286(48): 41520-41529.
https://doi.org/10.1074/jbc.M111.290411
PMid:21965681 PMCid:PMC3308863

24. Мuscle. Fundamental biology and mechanism of disease / Ch. 86: Calcium homeostasis and signaling in smooth muscle. Elsevier, 2012, V.II: 1155-1173.
https://doi.org/10.1016/B978-0-12-381510-1.00086-7

25. Pande J., Grover A.K. Plasma membrane calcium pumps in smooth muscle: from fictional molecules to novel inhibitors. Can. J. Physiol. Pharmacol, 2005; 83: 743-754.
https://doi.org/10.1139/y05-075
PMid:16333376

26. Pande J., Szewczyk M.M., Grover A.K. Allosteric inhibitors of plasma membrane Ca2+ pumps: Invention and applications of caloxins. World. J. Biol. Chem, 2011; 2(3): 39-47.
https://doi.org/10.4331/wjbc.v2.i3.39
PMid:21537489 PMCid:PMC3083994

27. Pritchard T.J., Bowman P.S., Jefferson A. et al. Na+-K+-ATPase and Ca2+ clearance proteins in smooth muscle: a functional unit. Am. J. Physiol. Heart. Circ. Physiol, 2010; 299: H548-H556.
https://doi.org/10.1152/ajpheart.00527.2009
PMid:20543086 PMCid:PMC2930395

28. Rodik R.V., Boyko V.I., Kalchenko V.I. Calixarenes in bio-medical researches. Curr. Med. Chem, 2009; 16(13): 1630-1655.
https://doi.org/10.2174/092986709788186219
PMid:19442137

29. Schuh K., Quaschning T., Knauer S. et al. Regulation of vascular tone in animals overexpressing the sarcolemmal calcium pump. J. Biol. Chem, 2003; 278: 41246-41252.
https://doi.org/10.1074/jbc.M307606200
PMid:12900399

30. Schuh K., Uldrijan S., Telkamp M. et al. The plasmamembrane calmodulin-dependent calcium pump: a major regulator of nitric oxide synthase I. J. Cell Biol, 2001; 155(2): 201-205.
https://doi.org/10.1083/jcb.200104131
PMid:11591728 PMCid:PMC2198825

31. Shmigol A., Eisner D.A., Wray S. Carboxyeosin decreases the rate of decay of the [Ca2+]i transient in uterine smooth muscle cells isolated from pregnant rats. Eur. J. Physiol, 1998; 437: 158-160.
https://doi.org/10.1007/s004240050761
PMid:9817801

32. Shmigol A. V., Eisner D. A., Wray S. The role of the sarcoplasmic reticulum as a Ca2+ sink in rat uterine smooth muscle cells. J. Physiol, 1999; 520(1): 153-163.
https://doi.org/10.1111/j.1469-7793.1999.00153.x
PMid:10517808 PMCid:PMC2269575

33. Strehler E.E., Filoteo A.G., Penniston J.T., Caride A.J. Plasma membrane Ca2+-pumps: structural diversity as basis for functional versatility. Biochem. Soc. Trans, 2007; 35(5): 919-922.
https://doi.org/10.1042/BST0350919
PMid:17956246 PMCid:PMC2276580

34. Strehler E.E., Zacharias D.A. Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. Physiol. Rev, 2001; 81(1): 21-50.
https://doi.org/10.1152/physrev.2001.81.1.21
PMid:11152753

35. Summers B.A., Overholt J.L., Prabhakar N.R. Nitric oxide inhibits L-type Ca2+ current in glomus cells of the rabbit carotid body via a cGMP-independent mechanism. J. Neurophysiol, 1999; 81: 1449-1457.
https://doi.org/10.1152/jn.1999.81.4.1449
PMid:10200181

36. Williams J.C., Armesilla A.L., Mohamed T.M.A. et al. The sarcolemmal calcium pump, α-1 syntrophin, and neuronal nitric-oxide synthase are parts of a macromolecular protein complex. J. Biol. Chem, 2011; 281(33): 23341-23348.
https://doi.org/10.1074/jbc.M513341200
PMid:16735509

37. Wray S., Burdyga Th., Noble K. Calcium signalling in smooth muscle. Cell Calcium, 2005; 38: 397-407.
https://doi.org/10.1016/j.ceca.2005.06.018
PMid:16137762

38. Wray S., Jones K., Kupittayanant S. et al. Calcium signaling and uterine contractility. J. Soc. Gynecol. Investig, 2003; 10(5): 252-264.
https://doi.org/10.1016/S1071-5576(03)00089-3

39. Zuhlke R. D., Reuter H. Ca2+-sensitive inactivation of L-type Ca2+ channels depends on multiple cytoplasmic amino acid sequences of the α1C subunit. Proc. Natl. Acad. Sci, 1998; 95: 3287-3294.
https://doi.org/10.1073/pnas.95.6.3287
PMid:9501255 PMCid:PMC19734


Refbacks

  • There are currently no refbacks.


Copyright (c) 2013 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.