INFLUENCE OF CALIXARENE C-90 ON CONTRACTILE ACTIVITY OF RAT MYOMETRIUM SMOOTH MUSCLES
DOI: http://dx.doi.org/10.30970/sbi.0703.298
Abstract
It is known that calix[4]arene with cipher C-90 selectively and with high affinity inhibits Ca2+,Mg2+-ATPase of smooth muscle cells plasma membrane preparations. The work wis devoted to investigation of the influence of calixarene C-90 (10 µM) on spontaneous and induced (high-potassium solution and oxytocin) contractions of rat uterus longitudinal smooth muscles. Contractile activity was studied tensometrically in the isometric mode, analysis of the kinetic properties of contractions was performed by the calculation of the normalized maximal velocity of contraction (Vnс) and relaxation (Vnr) phases. Calixarene C-90 changed the spontaneous contractile activity, causing a decrease in amplitude and has no significant effect on the frequency, while slowing down of the relaxation phase of individual contractions (decreasing parameter Vnr) occurred. In the presence of non-selective NO-synthase inhibitor L-NAME (100 µM), calixarene C-90 did not cause a reduction of the amplitude of spontaneous contractions and the speed of relaxation phase returned to the control level. Furthermore, calixarene C-90 was equally contributing factor to reduced force of both oxytocin-induced (0.1 IU) and K+-induced (80 mM) contractions without affecting the nature of the increase in contractile force responses (normalized maximal velocity of contraction phase stayed at control level). The relaxation velocity of caused contractions recieved opposite changes depending on the nature of the contractile stimulation: in case of oxytocin-evoked contractions – decreased, while for K+-induced contractions – increased. In the presence of L-NAME calixarene C-90 did not cause inhibition of the maximal force K+- and oxytocin-induced contractions, but evoked changes in the kinetical parameters of contractile responses (decrease Vnr). Thus, blocking of NO synthesis resulted in the removal of inhibiting both spontaneous and evoked contractions of smooth muscle myometrium under the influence of calixarene C-90. These results suggest that inhibition force of uterus smooth muscle contractions under the influence of calixarene C-90 is by NO-dependent way, whereas slow relaxation (decrease in normalized maximal velocity Vnr) is caused by the inhibition of Ca2+-transport function of the plasma membrane calcium pump.
Keywords
Full Text:
PDF (Українська)References
1. Данилович Ю.В. Оксид азоту як регулятор внутрішньоклітинного кальцієвого гомеостазу в міоцитах матки. Укр. біохім. журнал, 2012; 84(3): 5-25. | |
| |
2. Лабинцева Р.Д., Слінченко Н.М., Векліч Т.О. та ін. порівняльне дослідження впливу каліксаренів на Mg2+-залежні атр-гідролазні ферментативні системи гладеньком'язових клітин матки. Укр. біохім. журнал, 2007; 79(3): 44-54. | |
| |
3. Brian O., Paul R.J. Ca2+ clearance and contractility in vascular smooth muscle: evidence from gene-altered murine models. J. Mol. Cell. Cardiol, 2008; 45(3): 347-362. | |
| |
4. Brini M., Carafoli E. The plasma membrane Ca2+ ATPase and the plasma membrane sodium calcium exchanger cooperate in the regulation of cell calcium. Cold Spring Harb. Perspect. Biol, 2011: 1-15. | |
| |
5. Brown A., Cornwell T., Korniyenko I. et al. Myometrial expression of small conductance Ca2+-activated K+ channels depresses phasic uterine contraction. Am. J. Physiol. Cell. Physiol, 2007; 292: C832-C840. | |
| |
6. Burdyga Th.V., Kosterin S.A. Kinetic analysis of smooth muscle relaxation. Gen. Physiol. Biophys, 1991; 10: 589-598. | |
| |
7. Carrera C., Proverbio T., Marin R., Proverbio F. Ca-ATPase of human myometrium plasma membranes. Physiol. Res, 2000; 49: 331-338. | |
| |
8. Chaud M., Franchi A.M., Rettori V. et al. Nitric oxide in the contractile action of bradykinin, oxytocin, and prostaglandin F2α in the estrogenized rat uterus. Proc. Natl. Acad. Sci, 1997; 94: 11049-11054. | |
| |
9. Chaudhary J., Walia M., Matharu J. et al. Caloxin: a novel plasma membrane Ca21 pump inhibitor. Am. J. Physiol. (Cell Physiol.), 2001; 280: C1027-C1030. | |
| |
10. El-Yazbi A.F., Cho W. J., Schulz R., Daniel E.E. Calcium extrusion by plasma membrane calcium pump is impaired in caveolin-1knockout mouse small intestine. Eur. J. Pharmacol, 2008; 591: 80-87. | |
| |
11. Ferdek P.E., Gerasimenko J.V., Peng S. et al. A Novel Role for Bcl-2 in regulation of cellular calcium extrusion. Cur. Biol, 2012; 22(13): 1241-1246. | |
| |
12. Grover A.K., Khan I. Calcium pump isoforms: diversity, selectivity and plasticity. Cell Сalcium, 1992; 13: 9-17. | |
| |
13. Hennan J.K., Diamond J. Evidence that spontaneous contractile activity in the rat myometrium is not inhibited by NO-mediated increases in tissue levels of cyclic GMP. Br. J. Pharm, 1998; 123: 959-967. | |
| |
14. Hering S., Berjukow S., Sokolov S. et al. Molecular determinants of inactivation in voltagegated Ca2+ channels. J. Physiol, 2000; 528(2): 237-249. | |
| |
15. Hoffmann P., Stanke-Labesque F., Fanchin R. et al. Effects of L-arginine and sodium nitroprusside on the spontaneous contractility of human non-pregnant uterus. Hum. Reprod, 2003; 18(1): 148-151. | |
| |
16. Holton M.L., Wang W., Emerson M. et al. Plasma membrane calcium ATPase proteins as novel regulators of signal transduction pathways. World J. Biol. Chem, 2010; 1(6): 201-208. | |
| |
17. Ishida Y., Paul R.J. Ca2+ clearance in smooth muscle: lessons from gene-altered mice. J. Smooth Muscle Res, 2005; 41(5): 235-245. | |
| |
18. Khan R.N., Matharoo-Ball B., Arulkumaran S., Ashford M.L.J. Potassium channels in the human myometrium. Exp. Physiol, 2001; 86(2): 255-264. | |
| |
19. Kosterin S.A. Mechanisms of Ca2+ transport in myometrium / Chapter 6. Eds. By R.E. Garfield, T.N. Tabb. CRC Press, Boca Raton, Ann Arbor, London, Tokyo. 1994. | |
| |
20. Liu L., Ishida Y., Okunade G. et al. Distinct roles of PMCA isoforms in Ca2+ homeostasis of bladder smooth muscle: evidence from PMCA gene-ablated mice. Am. J. Physiol. Cell. Physiol, 2007; 292: C423-C431. | |
| |
21. Liu L., Ishida Y., Okunade G. et al. Role of plasma membrane Ca2+-ATPase in contraction-relaxation processes of the bladder: evidence from PMCA gene-ablated mice. Am. J. Physiol. Cell Physiol, 2006; 290: C1239-C1247. | |
| |
22. Matthew A., Shmygol A., Wray S. Ca2+ entry, efflux and release in smooth muscle. Biol. Res, 2004; 37: 617-624. | |
| |
23. Mohamed T.M.A., Oceandy D., Zi M. et al. Plasma membrane calcium pump (PMCA4)-neuronal nitric-oxide synthase complex regulates cardiac contractility through modulation of a compartmentalized cyclic nucleotide microdomain. J. Biol. Chem, 2011; 286(48): 41520-41529. | |
| |
24. Мuscle. Fundamental biology and mechanism of disease / Ch. 86: Calcium homeostasis and signaling in smooth muscle. Elsevier, 2012, V.II: 1155-1173. | |
| |
25. Pande J., Grover A.K. Plasma membrane calcium pumps in smooth muscle: from fictional molecules to novel inhibitors. Can. J. Physiol. Pharmacol, 2005; 83: 743-754. | |
| |
26. Pande J., Szewczyk M.M., Grover A.K. Allosteric inhibitors of plasma membrane Ca2+ pumps: Invention and applications of caloxins. World. J. Biol. Chem, 2011; 2(3): 39-47. | |
| |
27. Pritchard T.J., Bowman P.S., Jefferson A. et al. Na+-K+-ATPase and Ca2+ clearance proteins in smooth muscle: a functional unit. Am. J. Physiol. Heart. Circ. Physiol, 2010; 299: H548-H556. | |
| |
28. Rodik R.V., Boyko V.I., Kalchenko V.I. Calixarenes in bio-medical researches. Curr. Med. Chem, 2009; 16(13): 1630-1655. | |
| |
29. Schuh K., Quaschning T., Knauer S. et al. Regulation of vascular tone in animals overexpressing the sarcolemmal calcium pump. J. Biol. Chem, 2003; 278: 41246-41252. | |
| |
30. Schuh K., Uldrijan S., Telkamp M. et al. The plasmamembrane calmodulin-dependent calcium pump: a major regulator of nitric oxide synthase I. J. Cell Biol, 2001; 155(2): 201-205. | |
| |
31. Shmigol A., Eisner D.A., Wray S. Carboxyeosin decreases the rate of decay of the [Ca2+]i transient in uterine smooth muscle cells isolated from pregnant rats. Eur. J. Physiol, 1998; 437: 158-160. | |
| |
32. Shmigol A. V., Eisner D. A., Wray S. The role of the sarcoplasmic reticulum as a Ca2+ sink in rat uterine smooth muscle cells. J. Physiol, 1999; 520(1): 153-163. | |
| |
33. Strehler E.E., Filoteo A.G., Penniston J.T., Caride A.J. Plasma membrane Ca2+-pumps: structural diversity as basis for functional versatility. Biochem. Soc. Trans, 2007; 35(5): 919-922. | |
| |
34. Strehler E.E., Zacharias D.A. Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. Physiol. Rev, 2001; 81(1): 21-50. | |
| |
35. Summers B.A., Overholt J.L., Prabhakar N.R. Nitric oxide inhibits L-type Ca2+ current in glomus cells of the rabbit carotid body via a cGMP-independent mechanism. J. Neurophysiol, 1999; 81: 1449-1457. | |
| |
36. Williams J.C., Armesilla A.L., Mohamed T.M.A. et al. The sarcolemmal calcium pump, α-1 syntrophin, and neuronal nitric-oxide synthase are parts of a macromolecular protein complex. J. Biol. Chem, 2011; 281(33): 23341-23348. | |
| |
37. Wray S., Burdyga Th., Noble K. Calcium signalling in smooth muscle. Cell Calcium, 2005; 38: 397-407. | |
| |
38. Wray S., Jones K., Kupittayanant S. et al. Calcium signaling and uterine contractility. J. Soc. Gynecol. Investig, 2003; 10(5): 252-264. | |
| |
39. Zuhlke R. D., Reuter H. Ca2+-sensitive inactivation of L-type Ca2+ channels depends on multiple cytoplasmic amino acid sequences of the α1C subunit. Proc. Natl. Acad. Sci, 1998; 95: 3287-3294. |
Refbacks
- There are currently no refbacks.
Copyright (c) 2013 Studia biologica
This work is licensed under a Creative Commons Attribution 4.0 International License.