Ca2+ RELEASING PROCESS AND NICOTINIC ACID ADENINE DINUCLEOTIDE PHOSPHATE

S. Bychkova


DOI: http://dx.doi.org/10.30970/sbi.0702.282

Abstract


The paper is devoted to recognizing of nicotinic acid adenine dinucleotide phosphate (NAADP) as releaser of intracellular calcium from intracellular stores. It was revealed the current concepts of the mechanisms of NAADP synthesis inside the cell resuming involve enzyme CD38. The effect of NAADP was described in several cells and tissue preparation, as well as in sea urchin eggs. Briefly, it was characterized the acidic store of cells, that is sensitive to NAADP as it had been shown by different authors. Assumed mechanisms of Ca2+ accumulating in acidic store predict involve proton gradient across membrane of acidic store. The channels structure of acidic store and endoplasmatic reticulum are considered as receptors to NAADP. Potential mechanisms for NAADP-induced calcium release was considered: direct model, trigger Ca2+-induced Ca2+-releasing model, promiscuous coupling model, conformational coupling model and also unifying hypothesis, that explains the differences between other mechanisms. Physiological processes in which NAADP is involved are described.


Keywords


NAADP, acidic store, Ca2+, ryanodine receptor, two-pore channels

Full Text:

PDF

References


1. Aley P.K., Mikolajczyk A.M., Munz B. et al. Nicotinic acid adenine dinucleotide phosphate regulates skeletal muscle differentiation via action at two-pore channels, Proc. Natl. Acad. Sci. U.S.A, 2010; 107: 19927-19932.
https://doi.org/10.1073/pnas.1007381107
PMid:21041635 PMCid:PMC2993425

2. Bach G. Mucolipidosis type IV. Mol. Genet. Metab, 2001; 73; 197-203.
https://doi.org/10.1006/mgme.2001.3195
PMid:11461186

3. Bak J., Billington R.A., Timar G. et al. NAADP receptors are present and functional in the heart. Curr. Biol, 2001; 11: 987-990.
https://doi.org/10.1016/S0960-9822(01)00269-X

4. Bak J., White P., Timar G. et al. Nicotinic acid adenine dinucleotide phosphate triggers Ca2+ release from brain microsomes. Curr. Biol, 1999; 9: 751-754.
https://doi.org/10.1016/S0960-9822(99)80335-2

5. Berg I., Potter B.V., Mayr G.W., Guse A.H. Nicotinic acid adenine dinucleotide phosphate (NAADP+) is an essential regulator of T-lymphocyte Ca2+-signaling. J. Cell Biol, 2000; 150: 581-588.
https://doi.org/10.1083/jcb.150.3.581
PMid:10931869

6. Boittin F.X., Galione A., Evans A.M. Nicotinic acid adenine dinucleotide phosphate mediates Ca2+ signals and contraction in arterial smooth muscle via a two-pool mechanism. Circ. Res, 2002; 91: 1168-1175.
https://doi.org/10.1161/01.RES.0000047507.22487.85
PMid:12480818

7. Brailoiu E., Churamani D., Cai X. et al. Essential requirement for two-pore channel 1 in NAADP-mediated calcium signaling. J. Cell Biol, 2009; 186: 201-209.
https://doi.org/10.1083/jcb.200904073
PMid:19620632 PMCid:PMC2717647

8. Brailoiu E., Hooper R., Cai X. et al. An ancestral deuterostome family of two-pore channels mediates nicotinic acid adenine dinucleotide phosphate-dependent calcium release from acidic organelles. J. Biol. Chem, 2010; 285: 2897-2901.
https://doi.org/10.1074/jbc.C109.081943
PMid:19940116 PMCid:PMC2823445

9. Brailoiu E., Hoard J.L., Filipeanu C.M. et al. NAADP potentiates neurite outgrowth J. Biol. Chem, 2005; 280: 5646-5650.
https://doi.org/10.1074/jbc.M408746200
PMid:15528210

10. Brailoiu E., Rahman T., Churamani D. et al. An NAADP-gated two-pore channel targeted to the plasma membrane uncouples triggering from amplifying Ca2+ signals. J. Biol. Chem, 2010; 285: 38511-38516.
https://doi.org/10.1074/jbc.M110.162073
PMid:20880839 PMCid:PMC2992283

11. Brailoiu G.C., Gurzu B., Gao X. et al. Acidic NAADP-sensitive calcium stores in the endothelium: agonist-specific recruitment and role in regulating blood pressure. J. Biol. Chem, 2010; 285: 37133-37137.
https://doi.org/10.1074/jbc.C110.169763
PMid:20876534 PMCid:PMC2988319

12. Calcraft P.J., Ruas M., Pan Z. et al. NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature, 2009; 459: 596-600.
https://doi.org/10.1038/nature08030
PMid:19387438 PMCid:PMC2761823

13. Cancela J.M., Churchill G.C., Galione A. Coordination of agonist-induced Ca2+ signalling patterns by NAADP in pancreatic acinar cells. Nature, 1999; 398: 74-76.
https://doi.org/10.1038/18032
PMid:10078532

14. Chunlei C., Zhou Y., Navarro B. et al. mTOR Regulates Lysosomal ATP-Sensitive Two-Pore Na+ Channels to Adapt to Metabolic State Cell, 2013; 152(4): 778-790.
https://doi.org/10.1016/j.cell.2013.01.023
PMid:23394946 PMCid:PMC3908667

15. Cantiello H.F., Montalbetti N., Goldmann W.H., Raychowdhury M.K., Gonzalez-Perret, S., Timpanaro G.A., Chasan B. Cation channel activity of mucolipin-1: the effect of calcium. Pflugers Arch, 2005; 451: 304-312.
https://doi.org/10.1007/s00424-005-1448-9
PMid:16133264

16. Cheng X., Shen D., Samie M., Xu H. Mucolipins: intracellular TRPML1-3 channels. FEBS Lett, 2010; 584: 2013-2021.
https://doi.org/10.1016/j.febslet.2009.12.056
PMid:20074572 PMCid:PMC2866799

17. Christensen K.A., Myers J.T., Swanson J.A. pH-dependent regulation of lysosomal calcium in macrophages. J. Cell Sci, 2002; 115: 599-607.

18. Churchill G.C., Okada Y., Thomas J. M. et al. NAADP mobilizes Ca2+ from reserve granules, lysosomerelated organelles, in sea urchin eggs. Cell, 2002; 111: 703-708.
https://doi.org/10.1016/S0092-8674(02)01082-6

19. Churchill G.C., O'Neil J.S., Masgrau R. et al. Sperm deliver a new messenger: NAADP. Curr. Biol, 2003; 13: 125-128.
https://doi.org/10.1016/S0960-9822(03)00002-2

20. Churchill G.C., Galione A. NAADP induces Ca2+ oscillations via a two-pool mechanism by priming IP3- and cADPR-sensitive Ca2+ stores. EMBO J, 2001; 20: 2666-2671.
https://doi.org/10.1093/emboj/20.11.2666
PMid:11387201 PMCid:PMC125473

21. Churchill G.C., Galione A. Spatial control of Ca2+ signaling by nicotinic acid adenine dinucleotide phosphate diffusion and gradients. J. Biol. Chem, 2000; 275: 38687-38692
https://doi.org/10.1074/jbc.M005827200
PMid:11006280

22. Clapper D.L., Walseth T.F., Dargie P.J., Lee H.C. Pyridine nucleotide metabolites stimulate calcium release from sea urchin egg microsomes desensitized to inositol trisphosphate. J. Biol. Chem, 1987; 262: 9561-9568.

23. Copello J.A., Qi Y., Jeyakumar L.H. et al. Lack of effect of cADP-ribose and NAADP on the activity of skeletal muscle and heart ryanodine receptors. Cell Calcium, 2001; 30: 269-284.
https://doi.org/10.1054/ceca.2001.0235
PMid:11587551

24. Cosker F., Cheviron N., Yamasaki M. et al. The ecto enzyme CD38 is a nicotinic acid adenine dinucleotide phosphate (NAADP) synthase that couples receptor activation to Ca2+ mobilization from lysosomes in pancreatic acinar cells. J. Biol. Chem, 2010; 285: 38251-38259.
https://doi.org/10.1074/jbc.M110.125864
PMid:20870729 PMCid:PMC2992259

25. Dammermann W., Guse A.H. Functional ryanodine receptor expression is required for NAADP-mediated local Ca2+ signaling in T-lymphocytes. J. Biol. Chem, 2005; 280: 21394-21399.
https://doi.org/10.1074/jbc.M413085200
PMid:15774471

26. Davis L.C., Morgan A.J., Chen J.L. et al. NAADP activates two-pore channels on T cell cytolytic granules to stimulate exocytosis and killing. Curr. Biol, 2012; 22(24): 2331-7.
https://doi.org/10.1016/j.cub.2012.10.035
PMid:23177477 PMCid:PMC3525857

27. Davis L.C., Morgan A.J., Ruas M. et al. Ca2+ signaling occurs via second messenger release from intraorganelle synthesis sites. Curr. Biol, 2008; 18: 1612-1618.
https://doi.org/10.1016/j.cub.2008.09.024
PMid:18951023 PMCid:PMC2581485

28. de Brito O.M., Scorrano L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature, 2008; 456: 605-610.
https://doi.org/10.1038/nature07534
PMid:19052620

29. Dong X. P., Cheng X., Mills E. et al. The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel. Nature, 2008; 455: 992-996.
https://doi.org/10.1038/nature07311
PMid:18794901 PMCid:PMC4301259

30. Duman J.G., Chen L., Palmer A.E., Hille B. Contributions of intracellular compartments to calcium dynamics: implicating an acidic store. Traffic, 2006; 7: 859-872
https://doi.org/10.1111/j.1600-0854.2006.00432.x
PMid:16787398

31. Esposito B., Gambara G., Lewis A.M. et al. NAADP links histamine H1 receptors to secretion of von Willebrand factor in human endothelial cells. Blood, 2011; 117: 4968-977.
https://doi.org/10.1182/blood-2010-02-266338
PMid:21364192

32. Galione A., Morgan A.J., Arredouani A. et al. NAADP as an intracellular messenger regulating lysosomal calcium-release channels, Biochem. Soc. Trans, 2010; 38: 1424-1431.
https://doi.org/10.1042/BST0381424
PMid:21118101

33. Galione A. , Petersen O. H. The NAADP Receptor: New Receptors or New Regulation? Molecular Interventions, 2005; 5(2): 73-792.
https://doi.org/10.1124/mi.5.2.4
PMid:15821155

34. Galione A., Evans A. M., Ma J. et al. The Acid Test: The Discovery of Two Pore Channels (TPCs) as NAADP-Gated Endolysosomal Ca2+. Release Channels Pflugers Arch, 2009; 458(5): 869-876.
https://doi.org/10.1007/s00424-009-0682-y
PMid:19475418 PMCid:PMC2799329

35. Gerasimenko J.V., Sherwood M., Tepikin A.V. et al. NAADP, cADPR and IP3 all release Ca2+ from the endoplasmic reticulum and an acidic store in the secretory granule area, J. Cell Sci, 2006; 119: 226-238.
https://doi.org/10.1242/jcs.02721
PMid:16410548

36. Gerasimenko J.V., Maruyama Y., Yano K. et al. NAADP mobilizes Ca2+ from a thapsigargin-sensitive store in the nuclear envelope by activating ryanodine receptors. J. Cell Biol, 2003; 163: 271-282.
https://doi.org/10.1083/jcb.200306134
PMid:14568993 PMCid:PMC2173522

37. Govindan S., Taylor C.W. P2Y receptor subtypes evoke different Ca2+ signals in cultured aortic smooth muscle cells. Purinergic Signal, 2012; 8(4): 763-77.
https://doi.org/10.1007/s11302-012-9323-6
PMid:22767215 PMCid:PMC3486169

38. Guse A.H. Linking NAADP to Ion Channel Activity:A Unifying Hypothesis Sciencesignaling, 2012; 5(221): p.18.
https://doi.org/10.1126/scisignal.2002890
PMid:22534131

39. Hohenegger M., Suko J., Gscheidlinger R. et al. Nicotinic acid-adenine dinucleotide phosphate activates the skeletal muscle ryanodine receptor. Biochem. J, 2002; 367: 423-431.
https://doi.org/10.1042/bj20020584
PMid:12102654 PMCid:PMC1222893

40. Johnson J.D., Misler S. Nicotinic acid-adenine dinucleotide phosphate-sensitive calcium stores initiate insulin signaling in human beta cells. Proc. Natl. Acad. Sci. U.S.A, 2002; 99: 14566-14571.
https://doi.org/10.1073/pnas.222099799
PMid:12381785 PMCid:PMC137923

41. Kinnear N.P., Boittin F.X., Thomas J.M. et al. Lysosome-sarcoplasmic reticulum junctions. A trigger zone for calcium signaling by nicotinic acid adenine dinucleotide phosphate and endothelin-1. J. Biol. Chem, 2004; 279: 54319-54326.
https://doi.org/10.1074/jbc.M406132200
PMid:15331591

42. Kinnear N.P., Wyatt C.N., Clark J.H. et al. Lysosomes co-localize with ryanodine receptor subtype 3 to form a trigger zone for calcium signalling by NAADP in rat pulmonary arterial smooth muscle. Cell Calcium, 2008; 44:190-201
https://doi.org/10.1016/j.ceca.2007.11.003
PMid:18191199 PMCid:PMC3982125

43. Kinnea, N.P., Boittin F.X., Thomas J.M. et al. Lysosome-sarcoplasmic reticulum junctions. A trigger zone for calcium signaling by nicotinic acid adenine dinucleotide phosphate and endothelin-1. J. Biol. Chem, 2004; 279: 54319-54326.
https://doi.org/10.1074/jbc.M406132200
PMid:15331591

44. La Plante J.M., Falardeau J., Sun M. et al. Identification and characterization of the single channel function of human mucolipin-1 implicated in mucolipidosis type IV, a disorder affecting the lysosomal pathway. FEBS Lett, 2002; 532: 183-187.
https://doi.org/10.1016/S0014-5793(02)03670-0

45. Lee H.C. Nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated calcium signaling. J. Biol. Chem, 2005; 280: 33693-33696.
https://doi.org/10.1074/jbc.R500012200
PMid:16076847

46. Lee H.C., Aarhus R. Functional visualization of the separate but interacting calcium stores sensitive to NAADP and cyclic ADP-ribose. J. Cell Sci, 2000; 113: 4413-4420.

47. Lee H.C., Aarhus R. A derivative of NADP mobilizes calcium stores insensitive to inositol trisphosphate and cyclic ADP-ribose. J. Biol. Chem, 1995; 270: 2152-2157.
https://doi.org/10.1074/jbc.270.5.2152
PMid:7836444

48. Lim D., Kyozuka K., Gragnaniello G. et al. NAADP+ initiatesthe Ca2+ response during fertilization of starfish oocytes, FASEB J, 2001; 15: 2257-2267.
https://doi.org/10.1096/fj.01-0157com
PMid:11641253

49. López J., Dionisio N., Berna-Erro A. et al. Two-pore channel 2 (TPC2) modulates store-operated Ca(2+) entry. Biochim. Biophys. Acta, 2012; 1823(10): 1976-83.
https://doi.org/10.1016/j.bbamcr.2012.08.002
PMid:23077736

50. Maxfield F.R. Mukherjee S. The endosomal-lysosomal system. In: Lysosomal Disorders of the Brain (Platt, F. M. and Walkley, S. U., eds), (2004), Oxford: Oxford University Press pp. 3-31.
https://doi.org/10.1093/acprof:oso/9780198508786.003.0001

51. Mitchell K.J., Lai F.A., Rutter G.A. Ryanodine receptor type I and nicotinic acid adenine dinucleotide phosphate receptors mediate Ca2+ release from insulin-containing vesicles in living pancreatic β cells (MIN6). J. Biol. Chem, 2003; 278: 11057-11064.
https://doi.org/10.1074/jbc.M210257200
PMid:12538591

52. Mojzisova A., Krizanova O., Zacikova L. et al. Effect of nicotinic acid adenine dinucleotide phosphate on ryanodine calcium release channel in heart. Pflug. Arch, 2001; 441: 674-677.
https://doi.org/10.1007/s004240000465
PMid:11294249

53. Mojzisova A., Krizanova O., Zacikova L. et al. Effect of nicotinic acid adenine dinucleotide phosphate on ryanodine calcium release channel in heart. Pflüg. Arch, 2001; 441(5): 674-677.
https://doi.org/10.1007/s004240000465
PMid:11294249

54. Morgan A.J., Platt F.M., Lloyd-Evans E. Galione A. Molecular mechanisms of endolysosomal Ca2+ signalling in health and disease Biochem. J, 2011; 439: 349-374.
https://doi.org/10.1042/BJ20110949
PMid:21992097

55. Morgan A.J. Sea urchin eggs in the acid reign. Cell Calcium, 2011; 50: 147-156.
https://doi.org/10.1016/j.ceca.2010.12.007
PMid:21251713

56. Murphy J.A., Criddle D.N., Sherwood M. et al. Direct activation of cytosolic Ca2+ signaling andenzymesecretionby cholecystokinin inhumanpancreaticacinarcells. Gastroenterology, 2008; 135: 632-641.
https://doi.org/10.1053/j.gastro.2008.05.026
PMid:18555802

57. Ogunbayo O.A., Zhu Y., Rossi D. et al. Cyclic adenosine diphosphate ribose activates ryanodine receptors, whereas NAADP activates two-pore domain channels. J. Biol. Chem, 2011; 286: 9136-9140.
https://doi.org/10.1074/jbc.M110.202002
PMid:21216967 PMCid:PMC3058984

58. Palade P. The hunt for an alternate way to generate NAADP. Focus on "NAADP as a second messenger: neither CD38 nor base-exchange reaction are necessary for in vivo generation of NAADP in myometrial cells". Am. J. P. Cell Physiology, 2006; 292(1): 4-7.
https://doi.org/10.1152/ajpcell.00390.2006
PMid:16899546

59. Pandey V., Chuang C.C., Lewis A.M. et al. Recruitment of NAADP-sensitive acidic Ca2+ stores by glutamate. Biochem. J, 2009; 422: 503-512.
https://doi.org/10.1042/BJ20090194
PMid:19548879

60. Patel S., Brailoiu E. Triggering of Ca2+ signals by NAADP-gated two-pore channels: a role for membrane contact sites? Biochem. Soc. Trans, 2012; 40: 153-157.
https://doi.org/10.1042/BST20110693
PMid:22260682

61. Patel S., Muallem M. Acidic Ca2+ stores come to the fore. Cell Calcium, 2011; 50(2):109-112.
https://doi.org/10.1016/j.ceca.2011.03.009
PMid:21497395

62. Patel S., Ramakrishnana L., Rahmanb T. et al. The endo-lysosomal system as an NAADP-sensitive acidic Ca2+ store: Role for the two-pore channels Cell Calcium, 2011; 50: 157-167.
https://doi.org/10.1016/j.ceca.2011.03.011
PMid:21529939 PMCid:PMC3160778

63. Petersen O.H., Tepikin A.V. Polarized calcium signalling in exocrine gland cells, Annu. Rev. Physiol, 2008; 70: 273-299.
https://doi.org/10.1146/annurev.physiol.70.113006.100618
PMid:17850212

64. Petersen O.H., Gerasimenko O.V., Tepikin A.V., Gerasimenko J.V. Aberrant Ca2+ signalling through acidic calcium stores in pancreatic acinar cells. Cell Calcium, 2011; 50(2): 193-199.
https://doi.org/10.1016/j.ceca.2011.02.010
PMid:21435718

65. Pitt S.J., Funnell T.M., Sitsapesan M. et al. TPC2 is a novel NAADP-sensitive Ca2+ release channel, operating as a dual sensor of luminal pH and Ca2+. J. Biol. Chem, 2010; 285: 35039-35046.
https://doi.org/10.1074/jbc.M110.156927
PMid:20720007 PMCid:PMC2966118

66. Pryor P.R., Reimann F., Gribble F.M., Luzio J.P. Mucolipin-1 is a lysosomal membrane protein required for intracellular lactosylceramide traffic. Traffic, 2006; 7: 1388-1398.
https://doi.org/10.1111/j.1600-0854.2006.00475.x
PMid:16978393

67. Qureshi O.S., Paramasivam A., Yu J.C., Murrell-Lagnado R.D. Regulation of P2X4 receptors by lysosomal targeting, glycan protection and exocytosis. J. Cell Sci, 2007; 120: 3838-3849.
https://doi.org/10.1242/jcs.010348
PMid:17940064

68. Rizzuto R., Marchi S., Bonora M. R. et al. Ca2+ transfer from the ER to mitochondria: when, how and why. Biochim. Biophys. Acta, 2009; 1787: 1342-1351.
https://doi.org/10.1016/j.bbabio.2009.03.015
PMid:19341702 PMCid:PMC2730423

69. Ruas M., Rietdorf K., Arredouani A. et al. Purified TPC isoforms form NAADP receptors with distinct roles for Ca2+ signaling and endolysosomal trafficking. Curr. Biol, 2010; 20: 703-709.
https://doi.org/10.1016/j.cub.2010.02.049
PMid:20346675 PMCid:PMC2861162

70. Saftig P., Klumperman J. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat. Rev. Mol. Cell Biol, 2009; 10: 623-635.
https://doi.org/10.1038/nrm2745
PMid:19672277

71. Schieder M., Rötzer K., Brüggemann A. et al. Characterization of two-pore channel 2 (TPCN2)-mediated Ca2+ currents in isolated lysosomes. J. Biol. Chem, 2010; 285: 21219-21222.
https://doi.org/10.1074/jbc.C110.143123
PMid:20495006 PMCid:PMC2898409

72. Song E.K., Lee Y.R., Kim Y.R. et al. NAADP mediates insulin-stimulated glucose uptake and insulin sensitization by PPARγ in adipocytes. Cell Rep, 2012; 2(6): 1607-19.
https://doi.org/10.1016/j.celrep.2012.10.018
PMid:23177620

73. Sun M., Goldin E., Stahl S. et al. Mucolipidosis type IV is caused by mutations in a gene encoding a novel transient receptor potential channel. Hum. Mol. Genet, 2000; 9: 2471-2478.
https://doi.org/10.1093/hmg/9.17.2471
PMid:11030752

74. Tugba Durlu-Kandilci N., Ruas M., Chuang K.T. et al. TPC2 proteins mediate nicotinic acid adenine dinucleotide phosphate (NAADP)- and agonist-evoked contractions of smooth muscle. J. Biol. Chem, 2010; 285: (32): 24925-32.
https://doi.org/10.1074/jbc.M110.129833
PMid:20547763 PMCid:PMC2915728

75. Vergarajauregui S., Puertollano R. Two di-leucine motifs regulate trafficking of mucolipin-1 to lysosomes. Traffic, 2006; 7: 337-353.
https://doi.org/10.1111/j.1600-0854.2006.00387.x
PMid:16497227 PMCid:PMC1413585

76. Walseth T.F., Lin-Moshier Y., Jain P. et al. Photoaffinity Labeling of High Affinity Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP)-Binding Proteins in Sea Urchin Egg. J. Biol. Chem, 2012; 287(4): 2308-2315.
https://doi.org/10.1074/jbc.M111.306563
PMid:22117077 PMCid:PMC3268392

77. Yamaguchi S., Jha A., Li Q., Soyombo A.A. et al. Transient receptor potential mucolipin 1 (TRPML1) and two-pore channels are functionally independent organellar ion channels. Biol. Chem, 2011; 286(26): 22934-42.
https://doi.org/10.1074/jbc.M110.210930
PMid:21540176 PMCid:PMC3123061

78. Yamasaki M., Thomas J.T., Churchill G.C. et al. Role of NAADP and cADPR in the induction and maintenance of agonist-evoked Ca2+ spiking in mouse pancreatic acinar cells. Curr. Biol, 2005; 15: 874-878.
https://doi.org/10.1016/j.cub.2005.04.033
PMid:15886108

79. Yusufi A.N., Cheng J., Thompson M.A. et al. Differential mechanisms of Ca2+ release from vascular smooth muscle cell microsomes. Exp. Biol. Med. (Maywood), 2002; 227: 36-44.
https://doi.org/10.1177/153537020222700107
PMid:11788782

80. Zhang A.F., Xu M., Han W.Q., Li P.L. Reconstitution of lysosomal NAADP-TRP-ML1 signaling pathway and its function in TRP-ML1(-/-) cells. J. Physiol. Cell. Physiol, 2011; 301(2): C421-30.
https://doi.org/10.1152/ajpcell.00393.2010
PMid:21613607 PMCid:PMC3154564

81. Zong X., Schieder M., Cuny H.et al. The two-pore channel TPCN2 mediates NAADP-dependent Ca2+ release from lysosomal stores. Pflugers Arch, 2009; 458: 891-899.
https://doi.org/10.1007/s00424-009-0690-y
PMid:19557428 PMCid:PMC2719734


Refbacks

  • There are currently no refbacks.


Copyright (c) 2013 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.