Ca2+ RELEASING PROCESS AND NICOTINIC ACID ADENINE DINUCLEOTIDE PHOSPHATE
DOI: http://dx.doi.org/10.30970/sbi.0702.282
Abstract
The paper is devoted to recognizing of nicotinic acid adenine dinucleotide phosphate (NAADP) as releaser of intracellular calcium from intracellular stores. It was revealed the current concepts of the mechanisms of NAADP synthesis inside the cell resuming involve enzyme CD38. The effect of NAADP was described in several cells and tissue preparation, as well as in sea urchin eggs. Briefly, it was characterized the acidic store of cells, that is sensitive to NAADP as it had been shown by different authors. Assumed mechanisms of Ca2+ accumulating in acidic store predict involve proton gradient across membrane of acidic store. The channels structure of acidic store and endoplasmatic reticulum are considered as receptors to NAADP. Potential mechanisms for NAADP-induced calcium release was considered: direct model, trigger Ca2+-induced Ca2+-releasing model, promiscuous coupling model, conformational coupling model and also unifying hypothesis, that explains the differences between other mechanisms. Physiological processes in which NAADP is involved are described.
Keywords
Full Text:
PDFReferences
1. Aley P.K., Mikolajczyk A.M., Munz B. et al. Nicotinic acid adenine dinucleotide phosphate regulates skeletal muscle differentiation via action at two-pore channels, Proc. Natl. Acad. Sci. U.S.A, 2010; 107: 19927-19932. | |
| |
2. Bach G. Mucolipidosis type IV. Mol. Genet. Metab, 2001; 73; 197-203. | |
| |
3. Bak J., Billington R.A., Timar G. et al. NAADP receptors are present and functional in the heart. Curr. Biol, 2001; 11: 987-990. | |
| |
4. Bak J., White P., Timar G. et al. Nicotinic acid adenine dinucleotide phosphate triggers Ca2+ release from brain microsomes. Curr. Biol, 1999; 9: 751-754. | |
| |
5. Berg I., Potter B.V., Mayr G.W., Guse A.H. Nicotinic acid adenine dinucleotide phosphate (NAADP+) is an essential regulator of T-lymphocyte Ca2+-signaling. J. Cell Biol, 2000; 150: 581-588. | |
| |
6. Boittin F.X., Galione A., Evans A.M. Nicotinic acid adenine dinucleotide phosphate mediates Ca2+ signals and contraction in arterial smooth muscle via a two-pool mechanism. Circ. Res, 2002; 91: 1168-1175. | |
| |
7. Brailoiu E., Churamani D., Cai X. et al. Essential requirement for two-pore channel 1 in NAADP-mediated calcium signaling. J. Cell Biol, 2009; 186: 201-209. | |
| |
8. Brailoiu E., Hooper R., Cai X. et al. An ancestral deuterostome family of two-pore channels mediates nicotinic acid adenine dinucleotide phosphate-dependent calcium release from acidic organelles. J. Biol. Chem, 2010; 285: 2897-2901. | |
| |
9. Brailoiu E., Hoard J.L., Filipeanu C.M. et al. NAADP potentiates neurite outgrowth J. Biol. Chem, 2005; 280: 5646-5650. | |
| |
10. Brailoiu E., Rahman T., Churamani D. et al. An NAADP-gated two-pore channel targeted to the plasma membrane uncouples triggering from amplifying Ca2+ signals. J. Biol. Chem, 2010; 285: 38511-38516. | |
| |
11. Brailoiu G.C., Gurzu B., Gao X. et al. Acidic NAADP-sensitive calcium stores in the endothelium: agonist-specific recruitment and role in regulating blood pressure. J. Biol. Chem, 2010; 285: 37133-37137. | |
| |
12. Calcraft P.J., Ruas M., Pan Z. et al. NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature, 2009; 459: 596-600. | |
| |
13. Cancela J.M., Churchill G.C., Galione A. Coordination of agonist-induced Ca2+ signalling patterns by NAADP in pancreatic acinar cells. Nature, 1999; 398: 74-76. | |
| |
14. Chunlei C., Zhou Y., Navarro B. et al. mTOR Regulates Lysosomal ATP-Sensitive Two-Pore Na+ Channels to Adapt to Metabolic State Cell, 2013; 152(4): 778-790. | |
| |
15. Cantiello H.F., Montalbetti N., Goldmann W.H., Raychowdhury M.K., Gonzalez-Perret, S., Timpanaro G.A., Chasan B. Cation channel activity of mucolipin-1: the effect of calcium. Pflugers Arch, 2005; 451: 304-312. | |
| |
16. Cheng X., Shen D., Samie M., Xu H. Mucolipins: intracellular TRPML1-3 channels. FEBS Lett, 2010; 584: 2013-2021. | |
| |
17. Christensen K.A., Myers J.T., Swanson J.A. pH-dependent regulation of lysosomal calcium in macrophages. J. Cell Sci, 2002; 115: 599-607. | |
| |
18. Churchill G.C., Okada Y., Thomas J. M. et al. NAADP mobilizes Ca2+ from reserve granules, lysosomerelated organelles, in sea urchin eggs. Cell, 2002; 111: 703-708. | |
| |
19. Churchill G.C., O'Neil J.S., Masgrau R. et al. Sperm deliver a new messenger: NAADP. Curr. Biol, 2003; 13: 125-128. | |
| |
20. Churchill G.C., Galione A. NAADP induces Ca2+ oscillations via a two-pool mechanism by priming IP3- and cADPR-sensitive Ca2+ stores. EMBO J, 2001; 20: 2666-2671. | |
| |
21. Churchill G.C., Galione A. Spatial control of Ca2+ signaling by nicotinic acid adenine dinucleotide phosphate diffusion and gradients. J. Biol. Chem, 2000; 275: 38687-38692 | |
| |
22. Clapper D.L., Walseth T.F., Dargie P.J., Lee H.C. Pyridine nucleotide metabolites stimulate calcium release from sea urchin egg microsomes desensitized to inositol trisphosphate. J. Biol. Chem, 1987; 262: 9561-9568. | |
| |
23. Copello J.A., Qi Y., Jeyakumar L.H. et al. Lack of effect of cADP-ribose and NAADP on the activity of skeletal muscle and heart ryanodine receptors. Cell Calcium, 2001; 30: 269-284. | |
| |
24. Cosker F., Cheviron N., Yamasaki M. et al. The ecto enzyme CD38 is a nicotinic acid adenine dinucleotide phosphate (NAADP) synthase that couples receptor activation to Ca2+ mobilization from lysosomes in pancreatic acinar cells. J. Biol. Chem, 2010; 285: 38251-38259. | |
| |
25. Dammermann W., Guse A.H. Functional ryanodine receptor expression is required for NAADP-mediated local Ca2+ signaling in T-lymphocytes. J. Biol. Chem, 2005; 280: 21394-21399. | |
| |
26. Davis L.C., Morgan A.J., Chen J.L. et al. NAADP activates two-pore channels on T cell cytolytic granules to stimulate exocytosis and killing. Curr. Biol, 2012; 22(24): 2331-7. | |
| |
27. Davis L.C., Morgan A.J., Ruas M. et al. Ca2+ signaling occurs via second messenger release from intraorganelle synthesis sites. Curr. Biol, 2008; 18: 1612-1618. | |
| |
28. de Brito O.M., Scorrano L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature, 2008; 456: 605-610. | |
| |
29. Dong X. P., Cheng X., Mills E. et al. The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel. Nature, 2008; 455: 992-996. | |
| |
30. Duman J.G., Chen L., Palmer A.E., Hille B. Contributions of intracellular compartments to calcium dynamics: implicating an acidic store. Traffic, 2006; 7: 859-872 | |
| |
31. Esposito B., Gambara G., Lewis A.M. et al. NAADP links histamine H1 receptors to secretion of von Willebrand factor in human endothelial cells. Blood, 2011; 117: 4968-977. | |
| |
32. Galione A., Morgan A.J., Arredouani A. et al. NAADP as an intracellular messenger regulating lysosomal calcium-release channels, Biochem. Soc. Trans, 2010; 38: 1424-1431. | |
| |
33. Galione A. , Petersen O. H. The NAADP Receptor: New Receptors or New Regulation? Molecular Interventions, 2005; 5(2): 73-792. | |
| |
34. Galione A., Evans A. M., Ma J. et al. The Acid Test: The Discovery of Two Pore Channels (TPCs) as NAADP-Gated Endolysosomal Ca2+. Release Channels Pflugers Arch, 2009; 458(5): 869-876. | |
| |
35. Gerasimenko J.V., Sherwood M., Tepikin A.V. et al. NAADP, cADPR and IP3 all release Ca2+ from the endoplasmic reticulum and an acidic store in the secretory granule area, J. Cell Sci, 2006; 119: 226-238. | |
| |
36. Gerasimenko J.V., Maruyama Y., Yano K. et al. NAADP mobilizes Ca2+ from a thapsigargin-sensitive store in the nuclear envelope by activating ryanodine receptors. J. Cell Biol, 2003; 163: 271-282. | |
| |
37. Govindan S., Taylor C.W. P2Y receptor subtypes evoke different Ca2+ signals in cultured aortic smooth muscle cells. Purinergic Signal, 2012; 8(4): 763-77. | |
| |
38. Guse A.H. Linking NAADP to Ion Channel Activity:A Unifying Hypothesis Sciencesignaling, 2012; 5(221): p.18. | |
| |
39. Hohenegger M., Suko J., Gscheidlinger R. et al. Nicotinic acid-adenine dinucleotide phosphate activates the skeletal muscle ryanodine receptor. Biochem. J, 2002; 367: 423-431. | |
| |
40. Johnson J.D., Misler S. Nicotinic acid-adenine dinucleotide phosphate-sensitive calcium stores initiate insulin signaling in human beta cells. Proc. Natl. Acad. Sci. U.S.A, 2002; 99: 14566-14571. | |
| |
41. Kinnear N.P., Boittin F.X., Thomas J.M. et al. Lysosome-sarcoplasmic reticulum junctions. A trigger zone for calcium signaling by nicotinic acid adenine dinucleotide phosphate and endothelin-1. J. Biol. Chem, 2004; 279: 54319-54326. | |
| |
42. Kinnear N.P., Wyatt C.N., Clark J.H. et al. Lysosomes co-localize with ryanodine receptor subtype 3 to form a trigger zone for calcium signalling by NAADP in rat pulmonary arterial smooth muscle. Cell Calcium, 2008; 44:190-201 | |
| |
43. Kinnea, N.P., Boittin F.X., Thomas J.M. et al. Lysosome-sarcoplasmic reticulum junctions. A trigger zone for calcium signaling by nicotinic acid adenine dinucleotide phosphate and endothelin-1. J. Biol. Chem, 2004; 279: 54319-54326. | |
| |
44. La Plante J.M., Falardeau J., Sun M. et al. Identification and characterization of the single channel function of human mucolipin-1 implicated in mucolipidosis type IV, a disorder affecting the lysosomal pathway. FEBS Lett, 2002; 532: 183-187. | |
| |
45. Lee H.C. Nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated calcium signaling. J. Biol. Chem, 2005; 280: 33693-33696. | |
| |
46. Lee H.C., Aarhus R. Functional visualization of the separate but interacting calcium stores sensitive to NAADP and cyclic ADP-ribose. J. Cell Sci, 2000; 113: 4413-4420. | |
| |
47. Lee H.C., Aarhus R. A derivative of NADP mobilizes calcium stores insensitive to inositol trisphosphate and cyclic ADP-ribose. J. Biol. Chem, 1995; 270: 2152-2157. | |
| |
48. Lim D., Kyozuka K., Gragnaniello G. et al. NAADP+ initiatesthe Ca2+ response during fertilization of starfish oocytes, FASEB J, 2001; 15: 2257-2267. | |
| |
49. López J., Dionisio N., Berna-Erro A. et al. Two-pore channel 2 (TPC2) modulates store-operated Ca(2+) entry. Biochim. Biophys. Acta, 2012; 1823(10): 1976-83. | |
| |
50. Maxfield F.R. Mukherjee S. The endosomal-lysosomal system. In: Lysosomal Disorders of the Brain (Platt, F. M. and Walkley, S. U., eds), (2004), Oxford: Oxford University Press pp. 3-31. | |
| |
51. Mitchell K.J., Lai F.A., Rutter G.A. Ryanodine receptor type I and nicotinic acid adenine dinucleotide phosphate receptors mediate Ca2+ release from insulin-containing vesicles in living pancreatic β cells (MIN6). J. Biol. Chem, 2003; 278: 11057-11064. | |
| |
52. Mojzisova A., Krizanova O., Zacikova L. et al. Effect of nicotinic acid adenine dinucleotide phosphate on ryanodine calcium release channel in heart. Pflug. Arch, 2001; 441: 674-677. | |
| |
53. Mojzisova A., Krizanova O., Zacikova L. et al. Effect of nicotinic acid adenine dinucleotide phosphate on ryanodine calcium release channel in heart. Pflüg. Arch, 2001; 441(5): 674-677. | |
| |
54. Morgan A.J., Platt F.M., Lloyd-Evans E. Galione A. Molecular mechanisms of endolysosomal Ca2+ signalling in health and disease Biochem. J, 2011; 439: 349-374. | |
| |
55. Morgan A.J. Sea urchin eggs in the acid reign. Cell Calcium, 2011; 50: 147-156. | |
| |
56. Murphy J.A., Criddle D.N., Sherwood M. et al. Direct activation of cytosolic Ca2+ signaling andenzymesecretionby cholecystokinin inhumanpancreaticacinarcells. Gastroenterology, 2008; 135: 632-641. | |
| |
57. Ogunbayo O.A., Zhu Y., Rossi D. et al. Cyclic adenosine diphosphate ribose activates ryanodine receptors, whereas NAADP activates two-pore domain channels. J. Biol. Chem, 2011; 286: 9136-9140. | |
| |
58. Palade P. The hunt for an alternate way to generate NAADP. Focus on "NAADP as a second messenger: neither CD38 nor base-exchange reaction are necessary for in vivo generation of NAADP in myometrial cells". Am. J. P. Cell Physiology, 2006; 292(1): 4-7. | |
| |
59. Pandey V., Chuang C.C., Lewis A.M. et al. Recruitment of NAADP-sensitive acidic Ca2+ stores by glutamate. Biochem. J, 2009; 422: 503-512. | |
| |
60. Patel S., Brailoiu E. Triggering of Ca2+ signals by NAADP-gated two-pore channels: a role for membrane contact sites? Biochem. Soc. Trans, 2012; 40: 153-157. | |
| |
61. Patel S., Muallem M. Acidic Ca2+ stores come to the fore. Cell Calcium, 2011; 50(2):109-112. | |
| |
62. Patel S., Ramakrishnana L., Rahmanb T. et al. The endo-lysosomal system as an NAADP-sensitive acidic Ca2+ store: Role for the two-pore channels Cell Calcium, 2011; 50: 157-167. | |
| |
63. Petersen O.H., Tepikin A.V. Polarized calcium signalling in exocrine gland cells, Annu. Rev. Physiol, 2008; 70: 273-299. | |
| |
64. Petersen O.H., Gerasimenko O.V., Tepikin A.V., Gerasimenko J.V. Aberrant Ca2+ signalling through acidic calcium stores in pancreatic acinar cells. Cell Calcium, 2011; 50(2): 193-199. | |
| |
65. Pitt S.J., Funnell T.M., Sitsapesan M. et al. TPC2 is a novel NAADP-sensitive Ca2+ release channel, operating as a dual sensor of luminal pH and Ca2+. J. Biol. Chem, 2010; 285: 35039-35046. | |
| |
66. Pryor P.R., Reimann F., Gribble F.M., Luzio J.P. Mucolipin-1 is a lysosomal membrane protein required for intracellular lactosylceramide traffic. Traffic, 2006; 7: 1388-1398. | |
| |
67. Qureshi O.S., Paramasivam A., Yu J.C., Murrell-Lagnado R.D. Regulation of P2X4 receptors by lysosomal targeting, glycan protection and exocytosis. J. Cell Sci, 2007; 120: 3838-3849. | |
| |
68. Rizzuto R., Marchi S., Bonora M. R. et al. Ca2+ transfer from the ER to mitochondria: when, how and why. Biochim. Biophys. Acta, 2009; 1787: 1342-1351. | |
| |
69. Ruas M., Rietdorf K., Arredouani A. et al. Purified TPC isoforms form NAADP receptors with distinct roles for Ca2+ signaling and endolysosomal trafficking. Curr. Biol, 2010; 20: 703-709. | |
| |
70. Saftig P., Klumperman J. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat. Rev. Mol. Cell Biol, 2009; 10: 623-635. | |
| |
71. Schieder M., Rötzer K., Brüggemann A. et al. Characterization of two-pore channel 2 (TPCN2)-mediated Ca2+ currents in isolated lysosomes. J. Biol. Chem, 2010; 285: 21219-21222. | |
| |
72. Song E.K., Lee Y.R., Kim Y.R. et al. NAADP mediates insulin-stimulated glucose uptake and insulin sensitization by PPARγ in adipocytes. Cell Rep, 2012; 2(6): 1607-19. | |
| |
73. Sun M., Goldin E., Stahl S. et al. Mucolipidosis type IV is caused by mutations in a gene encoding a novel transient receptor potential channel. Hum. Mol. Genet, 2000; 9: 2471-2478. | |
| |
74. Tugba Durlu-Kandilci N., Ruas M., Chuang K.T. et al. TPC2 proteins mediate nicotinic acid adenine dinucleotide phosphate (NAADP)- and agonist-evoked contractions of smooth muscle. J. Biol. Chem, 2010; 285: (32): 24925-32. | |
| |
75. Vergarajauregui S., Puertollano R. Two di-leucine motifs regulate trafficking of mucolipin-1 to lysosomes. Traffic, 2006; 7: 337-353. | |
| |
76. Walseth T.F., Lin-Moshier Y., Jain P. et al. Photoaffinity Labeling of High Affinity Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP)-Binding Proteins in Sea Urchin Egg. J. Biol. Chem, 2012; 287(4): 2308-2315. | |
| |
77. Yamaguchi S., Jha A., Li Q., Soyombo A.A. et al. Transient receptor potential mucolipin 1 (TRPML1) and two-pore channels are functionally independent organellar ion channels. Biol. Chem, 2011; 286(26): 22934-42. | |
| |
78. Yamasaki M., Thomas J.T., Churchill G.C. et al. Role of NAADP and cADPR in the induction and maintenance of agonist-evoked Ca2+ spiking in mouse pancreatic acinar cells. Curr. Biol, 2005; 15: 874-878. | |
| |
79. Yusufi A.N., Cheng J., Thompson M.A. et al. Differential mechanisms of Ca2+ release from vascular smooth muscle cell microsomes. Exp. Biol. Med. (Maywood), 2002; 227: 36-44. | |
| |
80. Zhang A.F., Xu M., Han W.Q., Li P.L. Reconstitution of lysosomal NAADP-TRP-ML1 signaling pathway and its function in TRP-ML1(-/-) cells. J. Physiol. Cell. Physiol, 2011; 301(2): C421-30. | |
| |
81. Zong X., Schieder M., Cuny H.et al. The two-pore channel TPCN2 mediates NAADP-dependent Ca2+ release from lysosomal stores. Pflugers Arch, 2009; 458: 891-899. |
Refbacks
- There are currently no refbacks.
Copyright (c) 2013 Studia biologica
This work is licensed under a Creative Commons Attribution 4.0 International License.