GROWTH RESPONSES OF WHEAT SEEDLINGS OF DIFFERENT VARIETIES TO HEAT-STRESS AND THEIR RELATION TO THE ANTIOXIDANT SYSTEM STATE AND OSMOLYTES ACCUMULATION
DOI: http://dx.doi.org/10.30970/sbi.1701.707
Abstract
Background. In recent decades, Ukraine has been experiencing abnormally high temperatures and droughts in different seasons, including autumn. This creates stressful conditions for winter cereals, especially wheat, at the very beginning of ontogeny. A comprehensive study of the functioning of antioxidant and osmoprotective systems in the early stages of development for wheat varieties of different ecological and geographical origins has not been conducted yet. This study aimed to investigate the effect of heat stress on the growth of etiolated seedlings of seven varieties of winter wheat (Triticum aestivum L.) and the indicators characterizing the functioning of antioxidant and osmoprotective systems.
Materials and Methods. Wheat grains of different varieties were germinated at 24 °C for three days in the dark. Subsequently, they were subjected to 4 h of heating at 45 °C in an air thermostat. Immediately after stress, the generation of superoxide anion radical (O2•‒) by seedlings, the content of hydrogen peroxide (H2O2), lipid peroxidation (LPO) products, catalase and guaiacol peroxidase activity, and also proline and soluble carbohydrates were analyzed. One day after heating, the relative inhibition of shoot and root growth was determined.
Results and Discussion. The Antonivka and Tobak varieties demonstrated the highest ability to maintain growth after exposure to high temperatures; the Darynka Kyivska and Lira Odeska varieties were medium resistant. In the Doskonala, Bogdana and Avgustina varieties, a strong inhibition of shoot and root growth after heat stress was noted. In Antonivka, after high-temperature exposure, the O2•‒ generation increased slightly, while the content of H2O2 and LPO products did not change. In Tobak, Darynka Kyivska and Lira Odeska, the stress-induced increase in ROS formation and accumulation of LPO products was moderate. The hyperthermia-sensitive Doskonala, Bogdana and Avgustina showed a significant development of oxidative stress. Heat-resistant varieties had high catalase activity and increased total soluble carbohydrate content under heat stress. After exposure to high temperature, the proline content increased in all studied varieties, but no positive correlation was recorded between its amount and their heat resistance. Likewise, no significant correlation was found between the guaiacol peroxidase activity and the ability of varieties to maintain growth after heat stress.
Conclusion. The high-level inverse correlation between catalase activity, soluble carbohydrate content, and the manifestation of oxidative stress effect indicates a significant contribution of these stress-protective system components to the adaptation of seedlings to heat stress. Indicators of the oxidative stress intensity and the functioning of individual components of the antioxidant system can be used to assess the heat resistance of wheat varieties at the early stages of development.
Keywords
Full Text:
PDFReferences
Ahmed, J., & Hassan, M. (2011). Evaluation of seedling proline content of wheat genotypes in relation to heat tolerance. Bangladesh Journal of Botany, 40(1), 17-22. doi:10.3329/bjb.v40i1.7991 Crossref ● Google Scholar | ||||
| ||||
Ali, S., Rizwan, M., Arif, M. S., Ahmad, R., Hasanuzzaman, M., Ali, B., & Hussain, A. (2020). Approaches in enhancing thermotolerance in plants: an updated review. Journal of Plant Growth Regulation, 39(1), 456-480. doi:10.1007/s00344-019-09994-x Crossref ● Google Scholar | ||||
| ||||
Asthir, B. (2015). Mechanisms of heat tolerance in crop plants. Biologia Plantarum, 59(4), 620-628. doi:10.1007/s10535-015-0539-5 Crossref ● Google Scholar | ||||
| ||||
Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. doi:10.1007/bf00018060 Crossref ● Google Scholar | ||||
| ||||
Chernobai, Yu. O., Riаbchun, V. K., Yarosh, A. V., & Morgunov, A. I. (2019). Winter bread wheat productivity elements and yield capacity in relation to its origin. Genetičnì Resursi Roslin (Plant Genetic Resources), 24, 47-57. doi:10.36814/pgr.2019.24.03 (In Ukrainian) Crossref ● Google Scholar | ||||
| ||||
Chmielowska-Bąk J., Izbiańska K., & Deckert J. (2015). Products of lipid, protein and RNA oxidation as signals and regulators of gene expression in plants. Frontier Plant Sciences, 6, 405. doi:10.3389/fpls.2015.00405 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Choudhury, F. K., Rivero, R. M., Blumwald, E., & Mittler, R. (2017). Reactive oxygen species, abiotic stress and stress combination. The Plant Journal, 90(5), 856-867. doi:10.1111/tpj.13299 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Gao, C. H., Sun, M., Anwar, S., Feng B., Ren, A. X., Lin, W., & Gao, Z. Q. (2021). Response of physiological characteristics and grain yield of winter wheat varieties to long-term heat stress at anthesis. Photosynthetica, 59(4), 640-651. doi:10.32615/ps.2021.060 Crossref ● Google Scholar | ||||
| ||||
Gautam, V., Kaur, R., Kohli, S. K., Verma, V., Kaur, P., Singh, R., Saini, P., Arora, S., Thukral, A.K., Karpets, Y. V., Kolupaev, Y. E., & Bhardwaj, R. (2017). ROS compartmentalization in plant cells under abiotic stress condition. In M. Khan & N. Khan (Eds.), Reactive oxygen species and antioxidant systems in plants: role and regulation under abiotic stress (pp. 89-114). Singapore: Springer. doi:10.1007/978-981-10-5254-5_4 Crossref ● Google Scholar | ||||
| ||||
Gupta, N. K., Agarwal, S., Agarwal, V. P., Nathawat, N. S., Gupta, S., & Singh, G. (2013). Effect of short-term heat stress on growth, physiology and antioxidative defence system in wheat seedlings. Acta Physiologiae Plantarum, 35(6), 1837-1842. doi:10.1007/s11738-013-1221-1 Crossref ● Google Scholar | ||||
| ||||
Halliwell, B., & Gutteridge, J. M. (2015). Free radicals in biology and medicine. Oxford university press, USA. doi: 10.1093/acprof:oso/9780198717478.001.0001 Crossref ● Google Scholar | ||||
| ||||
Hameed, A., Goher, M., & Iqbal, N. (2012). Heat stress-induced cell death, changes in antioxidants, lipid peroxidation, and protease activity in wheat leaves. Journal of Plant Growth Regulation, 31(3), 283-291. doi:10.1007/s00344-011-9238-4 Crossref ● Google Scholar | ||||
| ||||
Hasanuzzaman, M., Bhuyan, M. H. M., Zulfiqar, F., Raza, A., Mohsin, S., Mahmud, J., Fujita, M., & Fotopoulos, V. (2020). (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants, 9(8), 681. doi:10.3390/antiox9080681 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Hu, M., Shi, Z., Zhang, Z., Zhang, Y., & Li, H. (2012). Effects of exogenous glucose on seed germination and antioxidant capacity in wheat seedlings under salt stress. Plant Growth Regulation, 68(2), 177-188. doi:10.1007/s10725-012-9705-3 Crossref ● Google Scholar | ||||
| ||||
Karpets, Yu. V., Kolupaev, Yu. E., Yastreb, T. O., & Dmitriev, O. P. (2012). Possible pathways of heat resistance induction in plant cells by exogenous nitrogen oxide. Cytology and Genetics, 46(6), 354-359. doi:10.3103/s0095452712060059 Crossref ● Google Scholar | ||||
| ||||
Karpets, Yu. V., Kolupaev, Yu. E., Yastreb, T. O., Lugovaya, G. A., & Zayarnaya, E. Yu. (2016). Influence of fungicide Sedaxane on resistance of wheat (Triticum aestivum L.) plants of various ecotypes to soil drought. The Bulletin of Kharkiv National Agrarian University: Series Biology, 3(39), 39-47. (In Russian) Google Scholar | ||||
| ||||
Khakhula, V. S., Ulich, L. I., & Ulich, O. L. (2013). Vplyv ekolohichnoho chynnyka na realizatsiiu selektsiinoho potentsialu novykh sortiv pshenytsi ozymoi miakoi [The influence of the environmental factor on the realization of the breeding potential of new varieties of wheat winter mild]. Ahrobiolohiya, 11(104), 44-49. (In Ukrainian) Google Scholar | ||||
| ||||
Khomenko, L. (2020). Physiological aspects of winter wheat selection for adaptability. Visnyk Agrarnoi Nauky, 98(10), 33-38. doi:10.31073/agrovisnyk202010-05 Crossref ● Google Scholar | ||||
| ||||
Kiriziy, D. A., & Stasik, O. O. (2022). Effects of drought and high temperature on physiological and biochemical processes, and productivity of plants nanochelates. Fiziologia Rastenij i Genetika, 54(2), 95-122. doi:10.15407/frg2022.02.095 (In Ukrainian) Crossref ● Google Scholar | ||||
| ||||
Kolupaev, Yu. E., Horielova, E. I., Yastreb, T. O., & Ryabchun, N. I. (2020). State of antioxidant system in triticale seedlings at cold hardening of varieties of different frost resistance. Cereal Research Communications, 48(2), 165-171. doi:10.1007/s42976-020-00022-3 Crossref ● Google Scholar | ||||
| ||||
Kolupaev, Yu. E., Karpets, Yu. V., Yastreb, T. O., Shemet, S. A., & Bhardwaj, R. (2020b). Antioxidant system and plant cross-adaptation against metal excess and other environmental stressors. In: M. Landi, S. A. Shemet & V. S. Fedenko (Eds.), Metal toxicity in higher plants (pp. 21-66). New York: Nova Science Publishers. Google Scholar | ||||
| ||||
Kolupaev, Y. E., Yastreb, T. O., Salii, A. M., Kokorev, A. I., Ryabchun, N. I., Zmiievska, O. A., & Shkliarevskyi, M. A. (2022). State of antioxidant and osmoprotective systems in etiolated winter wheat seedlings of different cultivars due to their drought tolerance. Zemdirbyste-Agriculture, 109(4), 313-322. doi:10.13080/z-a.2022.109.040 Crossref ● Google Scholar | ||||
| ||||
Kosakivska, I. V., Vasyuk, V. A., Voytenko, L. V., & Shcherbatiuk, M. M. (2021). Changes in hormonal status of winter wheat (Triticum aestivum L.) and spelt wheat (Triticum spelta L.) after heat stress and in recovery period. Cereal Research Communications, 50(4), 821-830. doi:10.1007/s42976-021-00206-5 Crossref ● Google Scholar | ||||
| ||||
Kumar, R. R., Goswami, S., Sharma. S. K., Singh, K., Gadpayle, K. A., Kumar, N., Rai, G. K., Singh, M., & Rai, R. D. (2012). Protection against heat stress in wheat involves change in cell membrane stability, antioxidant enzymes, osmolyte, H2O2 and transcript of heat shock protein. International Journal of Plant Physiology and Biochemistry, 4(4): 83-91. doi:10.5897/IJPPB12.008 Crossref ● Google Scholar | ||||
| ||||
Kumar, R. R., & Rai, R. D. (2014). Can wheat beat the heat: understanding the mechanism of thermotolerance in wheat (Triticum aestivum L.). Cereal Research Communications, 42(1), 1-18. doi:10.1556/CRC.42.2014.1.1 Crossref ● Google Scholar | ||||
| ||||
Laxa, M., Liebthal, M., Telman, W., Chibani, K., & Dietz, K.-J. (2019). The role of the plant antioxidant system in drought tolerance. Antioxidants, 8(4), 94. doi:10.3390/antiox8040094 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Lou, L., Li, X., Chen, J., Li, Y., Tang, Y., & Lv, J. (2018). Photosynthetic and ascorbate-glutathione metabolism in the flag leaves as compared to spikes under drought stress of winter wheat (Triticum aestivum L.). PLoS One, 13(3), e0194625. doi:10.1371/journal.pone.0194625 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Morelli, R., Russo-Volpe, S., Bruno, N., & Lo Scalzo, R. (2003). Fenton-dependent damage to carbohydrates: free radical scavenging activity of some simple sugars. Journal of Agricultural and Food Chemistry, 51(25), 7418-7425. doi:10.1021/jf030172q Crossref ● PubMed ● Google Scholar | ||||
| ||||
Nasirzadeh, L., Sorkhilaleloo, B., Majidi Hervan, E., & Fatehi, F. (2021). Changes in antioxidant enzyme activities and gene expression profiles under drought stress in tolerant, intermediate, and susceptible wheat genotypes. Cereal Research Communications, 49(1), 83-89. doi:10.1007/s42976-020-00085-2 Crossref ● Google Scholar | ||||
| ||||
Niu, Y., & Xiang, Y. (2018). An overview of biomembrane functions in plant responses to high-temperature stress. Frontiers in Plant Science, 9, 915. doi:10.3389/fpls.2018.00915 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Oboznyi, O. I., Kryvoruchenko, R. V., Shevchenko, M. V. & Kolupaev, Yu. E. (2013). Antioxidant activity of winter wheat seedlings of different ecotypes in connection with sustainable hyperthermia and dehydration. The Bulletin of Kharkiv National Agrarian University: Series Biology, 1(28), 52-59. (In Russian) Google Scholar | ||||
| ||||
Romanenko, O., Kushch, І., Zayets, S., & Solodushko, M. (2018). Viability of seeds and sprouts of winter crop varieties under drought conditions of Steppe. Agroecological Journal, 1, 87-95. doi:10.33730/2077-4893.1.2018.160584 (In Ukrainian) Crossref ● Google Scholar | ||||
| ||||
Sagisaka, S. (1976). The occurrence of peroxide in a perennial plant, Populus gelrica. Plant Physiology, 57, 308-309. doi: 10.1104/pp.57.2.308 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Schoppach, R., & Sadok, W. (2013). Transpiration sensitivities to evaporative demand and leaf areas vary with night and day warming regimes among wheat genotypes. Functional Plant Biology, 40(7), 708. doi:10.1071/fp13028 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Tarkowski, Ł. P., & Van den Ende, W. (2015). Cold tolerance triggered by soluble sugars: a multifaceted countermeasure. Frontiers in Plant Science, 6, 203. doi:10.3389/fpls.2015.00203 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Urban, O., Hlaváčová, M., Klem, K., Novotná, K., Rapantová, B., Smutná, P., Horáková, V., Hlavinka, P., Škarpa, P., & Trnka, M. (2018). Combined effects of drought and high temperature on photosynthetic characteristics in four winter wheat genotypes. Field Crops Research, 223, 137-149. doi:10.1016/j.fcr.2018.02.029 Crossref ● Google Scholar | ||||
| ||||
Yadav, A., Singh, J., Ranjan, K., Kumar, P., Khanna, S., Gupta, M., Kumar, V., Wani, S. H., & Sirohi, A. (2020). Heat shock proteins: master players for heat-stress tolerance in plants during climate change. In S. H. Wani & V. Kumar (Eds.), Heat stress tolerance in plants: physiological, molecular and genetic perspectives (pp. 189-211). John Wiley & Sons Ltd. doi:10.1002/9781119432401.ch9 Crossref ● Google Scholar | ||||
| ||||
Yao, Y., He, R. J., Xie, Q. L., Zhao, X. H., Deng, X. M., He, J. B., Song, L., He, J., Marchant, A., Chen, X. Y., & Wu, A. M. (2017). ETHYLENE RESPONSE FACTOR 74 (ERF74) plays an essential role in controlling a respiratory burst oxidase homolog D (RbohD)-dependent mechanism in response to different stresses in Arabidopsis. New Phytologist, 213(4), 1667-1681. doi: 10.1111/nph.14278 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Yamamoto, Y. (2016). Quality control of photosystem II: the mechanisms for avoidance and tolerance of light and heat stresses are closely linked to membrane fluidity of the thylakoids. Frontiers in Plant Science, 7, 1136. doi:10.3389/fpls.2016.01136 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Zhuk, O. I., & Grygoryuk, I. P. (2002). Sposib otsinky zharostiikosti sortiv ozymoi pshenytsi [Method for assessing the heat resistance of winter wheat varieties] (Pat. 45879 UA, IPC 6A01G7/00). Ministry of Education and Science of Ukraine https://uapatents.com/2-45879-sposib-ocinki-zharostijjkosti-sortiv-ozimo-pshenici.html (In Ukrainian) |
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Yu. E. Kolupaev, B. E. Маkaova, T. O. Yastreb, N. I. Ryabchun, V. M. Tyshchenko, O. V. Barabolia, M. A. Shkliarevskyi
This work is licensed under a Creative Commons Attribution 4.0 International License.