GROWTH RESPONSES OF WHEAT SEEDLINGS OF DIFFERENT VARIETIES TO HEAT-STRESS AND THEIR RELATION TO THE ANTIOXIDANT SYSTEM STATE AND OSMOLYTES ACCUMULATION

Yu. E. Kolupaev, B. E. Маkaova, T. O. Yastreb, N. I. Ryabchun, V. M. Tyshchenko, O. V. Barabolia, M. A. Shkliarevskyi


DOI: http://dx.doi.org/10.30970/sbi.1701.707

Abstract


Background. In recent decades, Ukraine has been experiencing abnormally high temperatures and droughts in different seasons, including autumn. This creates stressful conditions for winter cereals, especially wheat, at the very beginning of ontogeny. A comprehensive study of the functioning of antioxidant and osmoprotective systems in the early stages of development for wheat varieties of different ecological and geographical origins has not been conducted yet. This study aimed to investigate the effect of heat stress on the growth of etiolated seedlings of seven varieties of winter wheat (Triticum aestivum L.) and the indicators characterizing the functioning of antioxidant and osmoprotective systems.
Materials and Methods. Wheat grains of different varieties were germinated at 24 °C for three days in the dark. Subsequently, they were subjected to 4 h of heating at 45 °C in an air thermostat. Immediately after stress, the generation of superoxide anion radical (O2•‒) by seedlings, the content of hydrogen peroxide (H2O2), lipid peroxidation (LPO) products, catalase and guaiacol peroxidase activity, and also proline and soluble carbohydrates were analyzed. One day after heating, the relative inhibition of shoot and root growth was determined.
Results and Discussion. The Antonivka and Tobak varieties demonstrated the highest ability to maintain growth after exposure to high temperatures; the Darynka Kyivska and Lira Odeska varieties were medium resistant. In the Doskonala, Bogdana and Avgustina varieties, a strong inhibition of shoot and root growth after heat stress was noted. In Antonivka, after high-temperature exposure, the O2•‒ generation increased slightly, while the content of H2O2 and LPO products did not change. In Tobak, Darynka Kyivska and Lira Odeska, the stress-induced increase in ROS formation and accumulation of LPO products was moderate. The hyperthermia-sensitive Doskonala, Bogdana and Avgustina showed a significant development of oxidative stress. Heat-resistant varieties had high catalase activity and increased total soluble carbohydrate content under heat stress. After exposure to high temperature, the proline content increased in all studied varieties, but no positive correlation was recorded between its amount and their heat resistance. Likewise, no significant correlation was found between the guaiacol peroxidase activity and the ability of varieties to maintain growth after heat stress.
Conclusion. The high-level inverse correlation between catalase activity, soluble carbohydrate content, and the manifestation of oxidative stress effect indicates a significant contribution of these stress-protective system components to the adaptation of seedlings to heat stress. Indicators of the oxidative stress intensity and the functioning of individual components of the antioxidant system can be used to assess the heat resistance of wheat varieties at the early stages of development.


Keywords


heat resistance, antioxidant system, osmoprotective system, Triticum aestivum L.

Full Text:

PDF

References


Ahmed, J., & Hassan, M. (2011). Evaluation of seedling proline content of wheat genotypes in relation to heat tolerance. Bangladesh Journal of Botany, 40(1), 17-22. doi:10.3329/bjb.v40i1.7991
CrossrefGoogle Scholar

Ali, S., Rizwan, M., Arif, M. S., Ahmad, R., Hasanuzzaman, M., Ali, B., & Hussain, A. (2020). Approaches in enhancing thermotolerance in plants: an updated review. Journal of Plant Growth Regulation, 39(1), 456-480. doi:10.1007/s00344-019-09994-x
CrossrefGoogle Scholar

Asthir, B. (2015). Mechanisms of heat tolerance in crop plants. Biologia Plantarum, 59(4), 620-628. doi:10.1007/s10535-015-0539-5
CrossrefGoogle Scholar

Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. doi:10.1007/bf00018060
CrossrefGoogle Scholar

Chernobai, Yu. O., Riаbchun, V. K., Yarosh, A. V., & Morgunov, A. I. (2019). Winter bread wheat productivity elements and yield capacity in relation to its origin. Genetičnì Resursi Roslin (Plant Genetic Resources), 24, 47-57. doi:10.36814/pgr.2019.24.03 (In Ukrainian)
CrossrefGoogle Scholar

Chmielowska-Bąk J., Izbiańska K., & Deckert J. (2015). Products of lipid, protein and RNA oxidation as signals and regulators of gene expression in plants. Frontier Plant Sciences, 6, 405. doi:10.3389/fpls.2015.00405
CrossrefPubMedPMCGoogle Scholar

Choudhury, F. K., Rivero, R. M., Blumwald, E., & Mittler, R. (2017). Reactive oxygen species, abiotic stress and stress combination. The Plant Journal, 90(5), 856-867. doi:10.1111/tpj.13299
CrossrefPubMedGoogle Scholar

Gao, C. H., Sun, M., Anwar, S., Feng B., Ren, A. X., Lin, W., & Gao, Z. Q. (2021). Response of physiological characteristics and grain yield of winter wheat varieties to long-term heat stress at anthesis. Photosynthetica, 59(4), 640-651. doi:10.32615/ps.2021.060
CrossrefGoogle Scholar

Gautam, V., Kaur, R., Kohli, S. K., Verma, V., Kaur, P., Singh, R., Saini, P., Arora, S., Thukral, A.K., Karpets, Y. V., Kolupaev, Y. E., & Bhardwaj, R. (2017). ROS compartmentalization in plant cells under abiotic stress condition. In M. Khan & N. Khan (Eds.), Reactive oxygen species and antioxidant systems in plants: role and regulation under abiotic stress (pp. 89-114). Singapore: Springer. doi:10.1007/978-981-10-5254-5_4
CrossrefGoogle Scholar

Gupta, N. K., Agarwal, S., Agarwal, V. P., Nathawat, N. S., Gupta, S., & Singh, G. (2013). Effect of short-term heat stress on growth, physiology and antioxidative defence system in wheat seedlings. Acta Physiologiae Plantarum, 35(6), 1837-1842. doi:10.1007/s11738-013-1221-1
CrossrefGoogle Scholar

Halliwell, B., & Gutteridge, J. M. (2015). Free radicals in biology and medicine. Oxford university press, USA. doi: 10.1093/acprof:oso/9780198717478.001.0001
CrossrefGoogle Scholar

Hameed, A., Goher, M., & Iqbal, N. (2012). Heat stress-induced cell death, changes in antioxidants, lipid peroxidation, and protease activity in wheat leaves. Journal of Plant Growth Regulation, 31(3), 283-291. doi:10.1007/s00344-011-9238-4
CrossrefGoogle Scholar

Hasanuzzaman, M., Bhuyan, M. H. M., Zulfiqar, F., Raza, A., Mohsin, S., Mahmud, J., Fujita, M., & Fotopoulos, V. (2020). (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants, 9(8), 681. doi:10.3390/antiox9080681
CrossrefPubMedPMCGoogle Scholar

Hu, M., Shi, Z., Zhang, Z., Zhang, Y., & Li, H. (2012). Effects of exogenous glucose on seed germination and antioxidant capacity in wheat seedlings under salt stress. Plant Growth Regulation, 68(2), 177-188. doi:10.1007/s10725-012-9705-3
CrossrefGoogle Scholar

Karpets, Yu. V., Kolupaev, Yu. E., Yastreb, T. O., & Dmitriev, O. P. (2012). Possible pathways of heat resistance induction in plant cells by exogenous nitrogen oxide. Cytology and Genetics, 46(6), 354-359. doi:10.3103/s0095452712060059
CrossrefGoogle Scholar

Karpets, Yu. V., Kolupaev, Yu. E., Yastreb, T. O., Lugovaya, G. A., & Zayarnaya, E. Yu. (2016). Influence of fungicide Sedaxane on resistance of wheat (Triticum aestivum L.) plants of various ecotypes to soil drought. The Bulletin of Kharkiv National Agrarian University: Series Biology, 3(39), 39-47. (In Russian)
Google Scholar

Khakhula, V. S., Ulich, L. I., & Ulich, O. L. (2013). Vplyv ekolohichnoho chynnyka na realizatsiiu selektsiinoho potentsialu novykh sortiv pshenytsi ozymoi miakoi [The influence of the environmental factor on the realization of the breeding potential of new varieties of wheat winter mild]. Ahrobiolohiya, 11(104), 44-49. (In Ukrainian)
Google Scholar

Khomenko, L. (2020). Physiological aspects of winter wheat selection for adaptability. Visnyk Agrarnoi Nauky, 98(10), 33-38. doi:10.31073/agrovisnyk202010-05
CrossrefGoogle Scholar

Kiriziy, D. A., & Stasik, O. O. (2022). Effects of drought and high temperature on physiological and biochemical processes, and productivity of plants nanochelates. Fiziologia Rastenij i Genetika, 54(2), 95-122. doi:10.15407/frg2022.02.095 (In Ukrainian)
CrossrefGoogle Scholar

Kolupaev, Yu. E., Horielova, E. I., Yastreb, T. O., & Ryabchun, N. I. (2020). State of antioxidant system in triticale seedlings at cold hardening of varieties of different frost resistance. Cereal Research Communications, 48(2), 165-171. doi:10.1007/s42976-020-00022-3
CrossrefGoogle Scholar

Kolupaev, Yu. E., Karpets, Yu. V., Yastreb, T. O., Shemet, S. A., & Bhardwaj, R. (2020b). Antioxidant system and plant cross-adaptation against metal excess and other environmental stressors. In: M. Landi, S. A. Shemet & V. S. Fedenko (Eds.), Metal toxicity in higher plants (pp. 21-66). New York: Nova Science Publishers.
Google Scholar

Kolupaev, Y. E., Yastreb, T. O., Salii, A. M., Kokorev, A. I., Ryabchun, N. I., Zmiievska, O. A., & Shkliarevskyi, M. A. (2022). State of antioxidant and osmoprotective systems in etiolated winter wheat seedlings of different cultivars due to their drought tolerance. Zemdirbyste-Agriculture, 109(4), 313-322. doi:10.13080/z-a.2022.109.040
CrossrefGoogle Scholar

Kosakivska, I. V., Vasyuk, V. A., Voytenko, L. V., & Shcherbatiuk, M. M. (2021). Changes in hormonal status of winter wheat (Triticum aestivum L.) and spelt wheat (Triticum spelta L.) after heat stress and in recovery period. Cereal Research Communications, 50(4), 821-830. doi:10.1007/s42976-021-00206-5
CrossrefGoogle Scholar

Kumar, R. R., Goswami, S., Sharma. S. K., Singh, K., Gadpayle, K. A., Kumar, N., Rai, G. K., Singh, M., & Rai, R. D. (2012). Protection against heat stress in wheat involves change in cell membrane stability, antioxidant enzymes, osmolyte, H2O2 and transcript of heat shock protein. International Journal of Plant Physiology and Biochemistry, 4(4): 83-91. doi:10.5897/IJPPB12.008
CrossrefGoogle Scholar

Kumar, R. R., & Rai, R. D. (2014). Can wheat beat the heat: understanding the mechanism of thermotolerance in wheat (Triticum aestivum L.). Cereal Research Communications, 42(1), 1-18. doi:10.1556/CRC.42.2014.1.1
CrossrefGoogle Scholar

Laxa, M., Liebthal, M., Telman, W., Chibani, K., & Dietz, K.-J. (2019). The role of the plant antioxidant system in drought tolerance. Antioxidants, 8(4), 94. doi:10.3390/antiox8040094
CrossrefPubMedPMCGoogle Scholar

Lou, L., Li, X., Chen, J., Li, Y., Tang, Y., & Lv, J. (2018). Photosynthetic and ascorbate-glutathione metabolism in the flag leaves as compared to spikes under drought stress of winter wheat (Triticum aestivum L.). PLoS One, 13(3), e0194625. doi:10.1371/journal.pone.0194625
CrossrefPubMedPMCGoogle Scholar

Morelli, R., Russo-Volpe, S., Bruno, N., & Lo Scalzo, R. (2003). Fenton-dependent damage to carbohydrates: free radical scavenging activity of some simple sugars. Journal of Agricultural and Food Chemistry, 51(25), 7418-7425. doi:10.1021/jf030172q
CrossrefPubMedGoogle Scholar

Nasirzadeh, L., Sorkhilaleloo, B., Majidi Hervan, E., & Fatehi, F. (2021). Changes in antioxidant enzyme activities and gene expression profiles under drought stress in tolerant, intermediate, and susceptible wheat genotypes. Cereal Research Communications, 49(1), 83-89. doi:10.1007/s42976-020-00085-2
CrossrefGoogle Scholar

Niu, Y., & Xiang, Y. (2018). An overview of biomembrane functions in plant responses to high-temperature stress. Frontiers in Plant Science, 9, 915. doi:10.3389/fpls.2018.00915
CrossrefPubMedPMCGoogle Scholar

Oboznyi, O. I., Kryvoruchenko, R. V., Shevchenko, M. V. & Kolupaev, Yu. E. (2013). Antioxidant activity of winter wheat seedlings of different ecotypes in connection with sustainable hyperthermia and dehydration. The Bulletin of Kharkiv National Agrarian University: Series Biology, 1(28), 52-59. (In Russian)
Google Scholar

Romanenko, O., Kushch, І., Zayets, S., & Solodushko, M. (2018). Viability of seeds and sprouts of winter crop varieties under drought conditions of Steppe. Agroecological Journal, 1, 87-95. doi:10.33730/2077-4893.1.2018.160584 (In Ukrainian)
CrossrefGoogle Scholar

Sagisaka, S. (1976). The occurrence of peroxide in a perennial plant, Populus gelrica. Plant Physiology, 57, 308-309. doi: 10.1104/pp.57.2.308
CrossrefPubMedPMCGoogle Scholar

Schoppach, R., & Sadok, W. (2013). Transpiration sensitivities to evaporative demand and leaf areas vary with night and day warming regimes among wheat genotypes. Functional Plant Biology, 40(7), 708. doi:10.1071/fp13028
CrossrefPubMedGoogle Scholar

Tarkowski, Ł. P., & Van den Ende, W. (2015). Cold tolerance triggered by soluble sugars: a multifaceted countermeasure. Frontiers in Plant Science, 6, 203. doi:10.3389/fpls.2015.00203
CrossrefPubMedPMCGoogle Scholar

Urban, O., Hlaváčová, M., Klem, K., Novotná, K., Rapantová, B., Smutná, P., Horáková, V., Hlavinka, P., Škarpa, P., & Trnka, M. (2018). Combined effects of drought and high temperature on photosynthetic characteristics in four winter wheat genotypes. Field Crops Research, 223, 137-149. doi:10.1016/j.fcr.2018.02.029
CrossrefGoogle Scholar

Yadav, A., Singh, J., Ranjan, K., Kumar, P., Khanna, S., Gupta, M., Kumar, V., Wani, S. H., & Sirohi, A. (2020). Heat shock proteins: master players for heat-stress tolerance in plants during climate change. In S. H. Wani & V. Kumar (Eds.), Heat stress tolerance in plants: physiological, molecular and genetic perspectives (pp. 189-211). John Wiley & Sons Ltd. doi:10.1002/9781119432401.ch9
CrossrefGoogle Scholar

Yao, Y., He, R. J., Xie, Q. L., Zhao, X. H., Deng, X. M., He, J. B., Song, L., He, J., Marchant, A., Chen, X. Y., & Wu, A. M. (2017). ETHYLENE RESPONSE FACTOR 74 (ERF74) plays an essential role in controlling a respiratory burst oxidase homolog D (RbohD)-dependent mechanism in response to different stresses in Arabidopsis. New Phytologist, 213(4), 1667-1681. doi: 10.1111/nph.14278
CrossrefPubMedGoogle Scholar

Yamamoto, Y. (2016). Quality control of photosystem II: the mechanisms for avoidance and tolerance of light and heat stresses are closely linked to membrane fluidity of the thylakoids. Frontiers in Plant Science, 7, 1136. doi:10.3389/fpls.2016.01136
CrossrefPubMedPMCGoogle Scholar

Zhuk, O. I., & Grygoryuk, I. P. (2002). Sposib otsinky zharostiikosti sortiv ozymoi pshenytsi [Method for assessing the heat resistance of winter wheat varieties] (Pat. 45879 UA, IPC 6A01G7/00). Ministry of Education and Science of Ukraine https://uapatents.com/2-45879-sposib-ocinki-zharostijjkosti-sortiv-ozimo-pshenici.html (In Ukrainian)


Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Yu. E. Kolupaev, B. E. Маkaova, T. O. Yastreb, N. I. Ryabchun, V. M. Tyshchenko, O. V. Barabolia, M. A. Shkliarevskyi

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.