MECHANOKINETICS OF THE SPONTANEOUS CONTRACTIONS OF SMOOTH MUSCLES IN THE STOMACH AND LARGE INTESTINE OF RATS UNDER CHRONIC EFFECT OF TiO2 NANOPARTICLES

O. V. Tsymbalyuk, L. A. Hurskyi, T. L. Davydovska, I. S. Voiteshenko, Kh. V. Sholota, М. S. Kozolup, O. V. Savchenko, A. M. Naumenko, V. A. Skryshevsky


DOI: http://dx.doi.org/10.30970/sbi.1701.706

Abstract


Background. Currently, nano-sized materials of titanium dioxide (TiО2) have wide industrial uses, particularly in the food industry and pharmacology. Therefore, the problem of TiО2 toxicity to living organisms in case of their chronic in vivo intake needs thorough investigation. As nanoparticles enter the internal environment of the body, they spread with the bloodstream to tissues and organs, where they partially accumulate. Thus studying the state of the pacemaker mechanisms of regulation of smooth muscle spontaneous contractions in the stomach and large intestine under chronic exposure to TiО2 nanoparticles is relevant and interesting. The purpose of this research work was to study the spontaneous contractile activity of the gastric and large intestine smooth muscles of rats under chronic (for 6 months) intake of an aqueous suspension of TiО2 nanoparticles.
Materials and Methods. Wistar rats were used in the experiments. Rats of the experimental group were daily intragastrically administered an aqueous suspension of ТіО2 nanoparticles for six months at a dose of 0.1 mg/kg. The study of the mechanokinetics of the contraction-relaxation process of muscle preparations was carried out according to the method (Kosterin et al., 2021) with the calculation of the mechanokinetic parameters of the contraction-relaxation cycle: force (Fmax, FC and FR), time (τ0, τC and τR), impulse (Іmax, ІC and ІR) and velocity (VC and VR).
Results. A comprehensive mechanokinetic analysis of spontaneous contractions of the antrum and caecum circular smooth muscles was carried out in control and under chronic in vivo exposure to ТіО2 nanocolloids (0.1 mg/kg/day) for 6 months.
It was found that the chronic action of ТіО2 nanocolloids significantly inhibits the contractile activity of the antrum smooth muscles accompanied by a decrease in all mechanokinetic parameters of time, force, velocity and impulse.
Under the same conditions, inhibition of the spontaneous contractions of the large intestine smooth muscles was observed. However, the time (τ0, τC and τR) and impulse (Іmax, ІC and ІR) parameters increased for these muscles against the background of the decrease in the force and velocity mechanokinetic parameters.
Conclusions. Modulation of the mechanokinetic parameters of the spontaneous contractile activity of the stomach and large intestine smooth muscles of rats under chronic intragastric administration of ТіО2 nanocolloids suggests that the functioning of pacemakers changes significantly under these conditions. Since the parameters of the contraction and relaxation phases of both the stomach and the large intestine smooth muscles do not differ by the magnitude of the inhibitory effects, it can be assumed that the effects of ТіО2 are not specific for particular Са2+ transport systems involved in contractile responses.


Keywords


smooth muscles of the stomach and large intestine, spontaneous contractions, chronic action of ТіО2 nanocolloids, mechanokinetic analysis

Full Text:

PDF

References


An, M.-H., Choi, S.-M., Lee, P.-H., Park, S., Baek, A. R., & Jang, A.-S. (2022). Cofilin-1 and profilin-1 expression in lung microvascular endothelial cells exposed to titanium dioxide nanoparticles. Advances in Clinical and Experimental Medicine, 31(11), 1255-1264. doi:10.17219/acem/152032
CrossrefPubMedGoogle Scholar

Andreollo, N. A., Santos, E. F. dos, Araújo, M. R., & Lopes, L. R. (2012). Rat's age versus human's age: what is the relationship? ABCD. Arquivos Brasileiros de Cirurgia Digestiva (São Paulo), 25(1), 49-51. doi:10.1590/s0102-67202012000100011
CrossrefPubMedGoogle Scholar

Bianco, F., Lattanzio, G., Lorenzini, L., Mazzoni, M., Clavenzani, P., Calzà, L., Giardino, L., Sternini, C., Costanzini, A., Bonora, E., & De Giorgio, R. (2022). Enteric neuromyopathies: highlights on genetic mechanisms underlying chronic intestinal pseudo-obstruction. Biomolecules, 12(12), 1849. doi:10.3390/biom12121849
CrossrefPubMedPMCGoogle Scholar

Biemans, V. B. C., van der Meulen-de Jong, A. E., van der Woude, C. J., Löwenberg, M., Dijkstra, G., Oldenburg, B., de Boer, N. K. H., van der Marel, S., Bodelier, A. G. L., Jansen, J. M., Haans, J. J. L., Theeuwen, R., de Jong, D., Pierik, M. J., & Hoentjen, F. (2020). Ustekinumab for Crohn's disease: results of the ICC registry, a nationwide prospective observational cohort study. Journal of Crohn's and Colitis, 14(1), 33-45. doi:10.1093/ecco-jcc/jjz119
CrossrefPubMedPMCGoogle Scholar

Burdyga, V., & Kosterin, S. A. (1991). Kinetic analysis of smooth muscle relaxation. General Physiology and Biophysics, 10(6), 589-598.
PubMedGoogle Scholar

Coméra, C., Cartier, C., Gaultier, E., Catrice, O., Panouille, Q., El Hamdi, S., Tirez, K., Nelissen, I., Théodorou, V., & Houdeau, E. (2020). Jejunal villus absorption and paracellular tight junction permeability are major routes for early intestinal uptake of food-grade TiO2 particles: an in vivo and ex vivo study in mice. Particle and Fibre Toxicology, 17(1), 26. doi:10.1186/s12989-020-00357-z
CrossrefPubMedPMCGoogle Scholar

Cretoiu, S. M. (2022). Telocytes and other interstitial cells 2.0: from structure to function. International Journal of Molecular Sciences, 23(24), 16221. doi:10.3390/ijms232416221
CrossrefPubMedPMCGoogle Scholar

David, O. M., Lategan, K. L., de Cortalezzi, M. F., & Pool, E. J. (2022). The stability and anti-angiogenic properties of titanium dioxide nanoparticles (TiO2NPs) using Caco-2 cells. Biomolecules, 12(10), 1334. doi:10.3390/biom12101334
CrossrefPubMedPMCGoogle Scholar

den Braber-Ymker, M., Vonk, M. C., Grünberg, K., Lammens, M., & Nagtegaal, I. D. (2020). Intestinal hypomotility in systemic sclerosis: a histological study into the sequence of events. Clinical Rheumatology, 40(3), 981-990. doi:10.1007/s10067-020-05325-8
CrossrefPubMedPMCGoogle Scholar

Disdier, C., Devoy, J., Cosnefroy, A., Chalansonnet, M., Herlin-Boime, N., Brun, E., Lund, A., & Mabondzo, A. (2015). Tissue biodistribution of intravenously administrated titanium dioxide nanoparticles revealed blood-brain barrier clearance and brain inflammation in rat. Particle and Fibre Toxicology, 12(1), 27. doi:10.1186/s12989-015-0102-8
CrossrefPubMedPMCGoogle Scholar

Fei, J., Nie, S., Zhang, B., Teng, X., Chen, Y., Qu, Y., Cheng, Z., & Guo, L. (2022). Study on the cytotoxic microstructure of titanium dioxide nanoparticles by X-ray phase-contrast CT imaging. Contrast Media & Molecular Imaging, 2022, 1-6. doi:10.1155/2022/2413922
CrossrefPubMedPMCGoogle Scholar

Foong, D., Zhou, J., Zarrouk, A., Ho, V., & O'Connor, M. D. (2020). Understanding the biology of human interstitial cells of Cajal in gastrointestinal motility. International Journal of Molecular Sciences, 21(12), 4540. doi:10.3390/ijms21124540
CrossrefPubMedPMCGoogle Scholar

He, M., Zhang, W., Liu, Z., Zhou, L., Cai, X., Li, R., Pan, Y., & Wang, F. (2022). The interfacial interactions of nanomaterials with human serum albumin. Analytical and Bioanalytical Chemistry, 414(16), 4677-4684. doi:10.1007/s00216-022-04089-1
CrossrefPubMedGoogle Scholar

Hirst, G. D. S., & Edwards, F. R. (2006). Electrical events underlying organized myogenic contractions of the guinea pig stomach. The Journal of Physiology, 576(3), 659-665. doi:10.1113/jphysiol.2006.116491
CrossrefPubMedPMCGoogle Scholar

Hou, J., Wang, L., Wang, C., Zhang, S., Liu, H., Li, S., & Wang, X. (2019). Toxicity and mechanisms of action of titanium dioxide nanoparticles in living organisms. Journal of Environmental Sciences, 75, 40-53. doi:10.1016/j.jes.2018.06.010
CrossrefPubMedGoogle Scholar

Huizinga, J. D., Hussain, A., & Chen, J.-H. (2021). Interstitial cells of Cajal and human colon motility in health and disease. American Journal of Physiology-Gastrointestinal and Liver Physiology, 321(5), G552-G575. doi:10.1152/ajpgi.00264.2021
CrossrefPubMedGoogle Scholar

Irshad, M. A., Nawaz, R., Rehman, M. Z. ur, Adrees, M., Rizwan, M., Ali, S., Ahmad, S., & Tasleem, S. (2021). Synthesis, characterization and advanced sustainable applications of titanium dioxide nanoparticles: a review. Ecotoxicology and Environmental Safety, 212, 111978. doi:10.1016/j.ecoenv.2021.111978
CrossrefPubMedGoogle Scholar

Karakhim, S. O., Shlykov, S. G., Babich, L. G., & Sinko, D. V. (2021). Analysis of decay kinetics of the cytosolic calcium transient induced by oxytocin in rat myometrium smooth muscle cells. Journal of Muscle Research and Cell Motility, 42(1), 117-127. doi:10.1007/s10974-021-09598-7
CrossrefPubMedGoogle Scholar

Kito, Y., Sanders, K. M., Ward, S. M., & Suzuki, H. (2009). Interstitial cells of Cajal generate spontaneous transient depolarizations in the rat gastric fundus. American Journal of Physiology-Gastrointestinal and Liver Physiology, 297(4), G814-G824. doi:10.1152/ajpgi.00118.2009
CrossrefPubMedPMCGoogle Scholar

Kosterin, S., Tsymbalyuk, O., & Holden, O. (2021) Multiparameter analysis of mechanokinetics of the contractile response of smooth muscles. Series on Biomechanics, 35(1), 14-30.
Google Scholar

Kozinetz, A. V., Tsymbalyuk, O. V., & Litvinenko, S. V. (2022). The first application of sensory structures based on photoelectric transducer for the study of enzymatic reactions. Studia Biologica, 16(4), 3-18. doi:10.30970/sbi.1604.698
CrossrefGoogle Scholar

Lama, S., Merlin-Zhang, O., & Yang, C. (2020). In vitro and in vivo models for evaluating the oral toxicity of nanomedicines. Nanomaterials, 10(11), 2177. doi:10.3390/nano10112177
CrossrefPubMedPMCGoogle Scholar

Malakootian, M., Nasiri, A., Osornio-Vargas, A. R., & Faraji, M. (2021). Effect of titanium dioxide nanoparticles on DNA methylation of human peripheral blood mononuclear cells. Toxicology Research, 10(5), 1045-1051. doi:10.1093/toxres/tfab085
CrossrefPubMedPMCGoogle Scholar

Mañé, N., & Jimenez, M. (2014). Interplay between myogenic pacemakers and enteric neurons determine distinct motor patterns in the rat colon. Neurogastroenterology & Motility, 26(10), 1508-1512. doi:10.1111/nmo.12393
CrossrefPubMedGoogle Scholar

Mansoor, A., Khurshid, Z., Khan, M. T., Mansoor, E., Butt, F. A., Jamal, A., & Palma, P. J. (2022). Medical and dental applications of titania nanoparticles: an overview. Nanomaterials, 12(20), 3670. doi:10.3390/nano12203670
CrossrefPubMedPMCGoogle Scholar

Naumenko, A. M., Nyporko, A. Yu., Tsymbalyuk, O. V., Nuryshchenko, N. Ye., Voiteshenko, I. S., & Davidovska, T. L. (2016). Molecular docking of nanosized titanium dioxide material to the extracellular part of GABAB-receptor. Studia Biologica, 10(3-4), 5-16. doi:10.30970/sbi.1003.506
CrossrefGoogle Scholar

Powley, T. L., Gilbert, J. M., Baronowsky, E. A., Billingsley, C. N., Martin, F. N., & Phillips, R. J. (2012). Vagal sensory innervation of the gastric sling muscle and antral wall: implications for gastro-esophageal reflux disease? Neurogastroenterology & Motility, 24(10), e526-e537. doi:10.1111/nmo.12003
CrossrefPubMedPMCGoogle Scholar

Rashid, M. M., Forte Tavčer, P., & Tomšič, B. (2021). Influence of titanium dioxide nanoparticles on human health and the environment. Nanomaterials, 11(9), 2354. doi:10.3390/nano11092354
CrossrefPubMedPMCGoogle Scholar

Sanders, K. M. (2019). Spontaneous electrical activity and rhythmicity in gastrointestinal smooth muscles. Smooth Muscle Spontaneous Activity, 1124, 3-46. doi:10.1007/978-981-13-5895-1_1
CrossrefPubMedPMCGoogle Scholar

Sanders, K. M., Koh, S. D., & Ward, S. M. (2006). Interstitial cells of cajal as pacemakers in the gastrointestinal tract. Annual Review of Physiology, 68(1), 307-343. doi:10.1146/annurev.physiol.68.040504.094718
CrossrefPubMedGoogle Scholar

Shamel, M., Rady, D., & Ankily, M. A. (2022). Evaluation of lingual mucosa toxicity and recovery follow-up in rats, following sub-chronic exposure to titanium dioxide nanoparticles. Dental and Medical Problems, 59(3), 427-435. doi:10.17219/dmp/137904
CrossrefPubMedGoogle Scholar

Sukhotnik, I., Ben-Shahar, Y., Pollak, Y., Cohen, S., Moran-Lev, H., Koppelmann, T., & Gorenberg, M. (2021). Intestinal dysmotility after bowel resection in rats is associated with decreased ghrelin and vimentin expression and loss of intestinal cells of Cajal. American Journal of Physiology-Gastrointestinal and Liver Physiology, 320(3), G283-G294. doi:10.1152/ajpgi.00223.2020
CrossrefPubMedPMCGoogle Scholar

Taggart, M. J., Menice, C. B., Morgan, K. G., & Wray, S. (1997). Effect of metabolic inhibition on intracellular Ca2+, phosphorylation of myosin regulatory light chain and force in rat smooth muscle. The Journal of Physiology, 499(2), 485-496. doi:10.1113/jphysiol.1997.sp021943
CrossrefPubMedPMCGoogle Scholar

Tobias, A., & Sadiq, N. M. (2022). Physiology, Gastrointestinal Nervous Control. In StatPearls. StatPearls Publishing.
Google Scholar

Tsymbalyuk, O. V., Naumenko, A. M., Rohovtsov, O. O., Skoryk, M. A., Voiteshenko, I. S., Skryshevsky, V. A., & Davydovska, T. L. (2017). Titanium dioxide modulation of the contractibility of visceral smooth muscles in vivo. Nanoscale Research Letters, 12(1), 129. doi:10.1186/s11671-017-1865-7
CrossrefPubMedPMCGoogle Scholar

Tsymbalyuk, O., Davydovska, T., Lisnyak, V., Veselsky, S., Zaderko, A., Voiteshenko, I., Naumenko, A., & Skryshevsky, V. (2021). ZnO and TiO2 nanocolloids: state of mechanisms that regulating the motility of the gastrointestinal tract and the hepatobiliary system. ACS Omega, 6(37), 23960-23976. doi:10.1021/acsomega.1c02981
CrossrefPubMedPMCGoogle Scholar

Tsymbalyuk, O., & Kosterin, S. (2021). Mechanokinetics and thermodynamics of highly elastic deformation of gastric smooth muscles under chronic intake of TiO2 nanocolloid. Series on Biomechanics, 35(4), 3-20.
Google Scholar

Tsymbalyuk, O. V., Vadzyuk, O. B., Voiteshenko, I. S., & Ivanova, V. D. (2022). Participation of KАТР-channels of plasma and mitochondrial membranes in the regulation of mechanokinetics of rat myometrium spontaneous contractions. Studia Biologica, 16(3), 19-34. doi:10.30970/sbi.1603.687
CrossrefGoogle Scholar

Tsymbalyuk, O. V., Naumenko, A. M., & Davydovska, T. L. (2019). Influence of nano-TiO2 on functioning of gastric smooth muscles: in vitro and in silico studies. Studia Biologica, 13(1), 3-26. doi:10.30970/sbi.1301.592
CrossrefGoogle Scholar

Tsymbalyuk, O. V., & Vadzyuk, O. B. (2020). Involvement of KАТР-channels of plasma and mitochondrial membranes in maintaining the contractive function of myometrium of non-pregnant rat uterus. Studia Biologica, 14(2), 3-16. doi:10.30970/sbi.1402.622
CrossrefGoogle Scholar

Wang, X.-Y., Lammers, W. J. E. P., Bercik, P., & Huizinga, J. D. (2005). Lack of pyloric interstitial cells of Cajal explains distinct peristaltic motor patterns in stomach and small intestine. American Journal of Physiology-Gastrointestinal and Liver Physiology, 289(3), G539-G549. doi:10.1152/ajpgi.00046.2005
CrossrefPubMedGoogle Scholar

Ward, S. M., Baker, S. A., Faoite, A., & Sanders, K. M. (2003). Propagation of slow waves requires IP3 receptors and mitochondrial Ca2+ uptake in canine colonic muscles. The Journal of Physiology, 549(1), 207-218. doi:10.1113/jphysiol.2003.040097
CrossrefPubMedPMCGoogle Scholar

Weir, A., Westerhoff, P., Fabricius, L., Hristovski, K., & von Goetz, N. (2012). Titanium dioxide nanoparticles in food and personal care products. Environmental Science & Technology, 46(4), 2242-2250. doi:10.1021/es204168d
CrossrefPubMedPMCGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 O. V. Tsymbalyuk, L. A. Hurskyi, T. L. Davydovska, I. S. Voiteshenko, Kh. V. Sholota, М. S. Kozolup, O. V. Savchenko, A. M. Naumenko, V. A. Skryshevsky

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.