PROGRAMMED CELL DEATH IN PATHOGENESIS INDUCED BY HERBICIDES INHIBITORS OF ACETYL-CoA-CARBOXYLASE
DOI: http://dx.doi.org/10.30970/sbi.0702.294
Abstract
Importance of pathogenesis induced by herbicides whose phytotoxic action is caused by the interaction with photosynthesis is discussed. For this class of herbicides, the participation of programmed cell death and the role of reactive oxygen species (ROS) in the induced pathogenesis are shown. However, study of pathogenesis induced by another class of herbicides, inhibitors of acetyl-CoA carboxylase is most important. Previous studies have shown that the phytotoxic action of inhibitors of acetyl-CoA carboxylase are mediated by ROS generation. This investigation showed that herbicide haloxyfop-R-metyl induced fragmentation of DNA isolated from root merystem of maize seedlings (Zea mays L.) in mono-oligonucleosomic cites that is an important marker of the programmed cell death. These data suggest that the programmed cell death is participating in pathogenesis induced by herbicides inhibitors of acetyl-CoA-carboxylase.
Keywords
Full Text:
PDF (Українська)References
1. Мордерер Є.Ю., Мережинський Ю.Г. Гербіциди. Т. 1. Механізми дії та практика застосування. Київ: Логос, 2009. 379 с. | |
| |
2. Мордерер Є.Ю., Паланиця М.П., Родзевич О.П. Дослідження участі вільнорадикальних окиснювальних реакцій у розвитку фітотоксичної дії грамініцидів. Физиология и биохимия культ. растений, 2008; 40(1): 56-62. | |
| |
3. Паланиця М.П, Трач В.В., Мордерер Є.Ю. Генерування активних форм кисню за дії грамініцидів та модифікаторів їх активності. Физиология и биохимия культ. растений, 2009; 41(4): 328-334. | |
| |
4. Apel K., Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol, 2004; 55: 373-399. | |
| |
5. Banas A., Johansson G., Stenlid G. et al. Free radical scavengers and inhibitors of lipoxygenases as antagonists against the herbicides haloxyfop and alloxydim. Swed. J. Agric. Res, 1993; 23: 65-67. | |
| |
6. Beers E. Programmed cell death during plant growth and development. Cell Death and Differentiation, 1997; 4: 649-661. | |
| |
7. Bjelk L., Monaco T. Effect of chlorimuron and quizalofop on fatty acid biosynthesis. Weed Sci, 1992; 40: 1-6. | |
| |
8. Chandrasena J., Sagar G. Effect of fluazifop-butyl on the chlorophyll content, fluorescence and chloroplast ultrastructure of Elymus repens leaves. Weed Res, 1987; 27: 103-112. | |
| |
9. Chen S., Dickman M. Bcl-2 family members localize to tobacco chloroplasts and inhibit programmed cell death induced by chloroplast-targeted herbicides. J. Exp. Bot, 2004; 55: 2617-2623. | |
| |
10. Chichkova N., Shaw J., Galiullina R. et al. Phytaspase, a relocalisable cell death promoting plant protease with caspase specificity. The EMBO Journal, 2010; 29: 1149-1161. | |
| |
11. Dan Hess F. Light-dependent herbicides: an overview. Weed Sci, 2000: 160-170. | |
| |
12. Danon A., Delorme V., Mailhac N., Gallois P. Plant programmed cell death: A common way to die. Plant Physiology and Biochemistry, 2000; 8: 647-655. | |
| |
13. Dat J., Pellinen R., Beeckman T. et al. Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco. Plant J, 2003; 33: 621-632. | |
| |
14. Delye C. Weed resistanse to acetyl coenzyme A carboxylase inhibitors: un update. Weed Sci, 2005; 53: 728-746. | |
| |
15. Doyle J.J., Doyle J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 1987; 19: 11-15. | |
| |
16. de Freitas D., Coelho M., Souza M. et al. Introduction of anti-apoptotic baculovirus p35 gene in passion fruit induces herbicide tolerance, reduced bacterial lesions, but does not inhibit passion fruit woodiness disease progress induced by cowpea aphid-borne mosaic virus (CABMV). Biotechnol. Lett, 2007; 29: 79-87. | |
| |
17. de Pinto M., Locato V., de Gara L. Redox regulation in plant programmed cell death. Plant, Cell and Environment, 2012; 35: 234-244. | |
| |
18. Drew M., He C., Morgan P. Programmed Cell Death in Animals and Plants. Oxford: BIOS Scientific Publishers Ltd, 2000: 183-192. | |
| |
19. Gadjev I., Stone J., Gechev T. Programmed cell death in plants: new insights into redox regulation and the role of hydrogen peroxide. International Review of Cell and Molecular Biology, 2008; 270: 87-144. | |
| |
20. Graham M. The diphenylether herbicide lactofen induces cell death and expression of defense-related genes in Soybean. Plant Physiology, 2005; 139: 1784-1794. | |
| |
21. Gray J. Programmed Cell Death in Plants. London: Blackwell Publishing, 2004. 287 р. | |
| |
22. Greenberg J. Programmed cell death: a way of life for plants. Proc. Natl. Acad. Sci. USA, 1996; 93: 12094-12097. | |
| |
23. Kuriyama H., Fukuda H. Developmental programmed cell death in plants. Curr. Opin. Plant Biol, 2002; 5: 568-573. | |
| |
24. Lam E. Controlled cell death, plant survival and development. Nature Rev. Mol. Cell Biol, 2004; 5: 305-15. | |
| |
25. Mitter R., Hallak H. Transgenic tobacco plants with reduced capability to detoxify reactive oxygen intermediates are hyperresponsive to pathogen infection. Proc. Natl. Acad. Sci. USA, 1999; 96: 4165-14170. | |
| |
26. O'Brien E., Baguley B., Murray B. et al. Early stages of the apoptotic pathway in plant cells are reversible. Plant J, 1998; 13: 803-814. | |
| |
27. Pennell R., Lamb C. Programmed cell death in plants. Plant Cell, 1997; 9: 1157-1168. | |
| |
28. Reape T., Molony E., McCabe P. Programmed cell death in plants: Distinguishing between different modes. Exp. Bot, 2008; 59: 435-44. | |
| |
29. Solomon M., Belenghi B., Delledonne M. et al. The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants. Plant Cell, 1999; 11: 431-444. | |
| |
30. Wyllie A., Kerr J., Currie A. Cell death: the significance of apoptosis. Int. Rev. Cytol, 1980; 68: 251-306. |
Refbacks
- There are currently no refbacks.
Copyright (c) 2013 Studia biologica
This work is licensed under a Creative Commons Attribution 4.0 International License.