PROGRAMMED CELL DEATH IN PATHOGENESIS INDUCED BY HERBICIDES INHIBITORS OF ACETYL-CoA-CARBOXYLASE

A. M. Sychuk, M. P. Radchenko, Ye. Yu. Morderer


DOI: http://dx.doi.org/10.30970/sbi.0702.294

Abstract


Importance of pathogenesis induced by herbicides whose phytotoxic action is caused by the interaction with photosynthesis is discussed. For this class of herbicides, the participation of programmed cell death and the role of reactive oxygen species (ROS) in the induced pathogenesis are shown. However, study of pathogenesis induced by another class of herbicides, inhibitors of acetyl-CoA carboxylase is most important. Previous studies have shown that the phytotoxic action of inhibitors of acetyl-CoA carboxylase are mediated by ROS generation. This investigation showed that herbicide haloxyfop-R-metyl induced fragmentation of DNA isolated from root merystem of maize seedlings (Zea mays L.) in mono-oligonucleosomic cites that is an important marker of the programmed cell death. These data suggest that the programmed cell death is participating in pathogenesis induced by herbicides inhibitors of acetyl-CoA-carboxylase.


Keywords


Zea mays, herbicides, induced pathogenesis, acetyl-CоА-carboxy­la­se, programmed cell death, DNA degradation

References


1. Мордерер Є.Ю., Мережинський Ю.Г. Гербіциди. Т. 1. Механізми дії та практика застосування. Київ: Логос, 2009. 379 с.

2. Мордерер Є.Ю., Паланиця М.П., Родзевич О.П. Дослідження участі вільнорадикальних окиснювальних реакцій у розвитку фітотоксичної дії грамініцидів. Физиология и биохимия культ. растений, 2008; 40(1): 56-62.

3. Паланиця М.П, Трач В.В., Мордерер Є.Ю. Генерування активних форм кисню за дії грамініцидів та модифікаторів їх активності. Физиология и биохимия культ. растений, 2009; 41(4): 328-334.

4. Apel K., Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol, 2004; 55: 373-399.
https://doi.org/10.1146/annurev.arplant.55.031903.141701
PMid:15377225

5. Banas A., Johansson G., Stenlid G. et al. Free radical scavengers and inhibitors of lipoxygenases as antagonists against the herbicides haloxyfop and alloxydim. Swed. J. Agric. Res, 1993; 23: 65-67.

6. Beers E. Programmed cell death during plant growth and development. Cell Death and Differentiation, 1997; 4: 649-661.
https://doi.org/10.1038/sj.cdd.4400297
PMid:16465277

7. Bjelk L., Monaco T. Effect of chlorimuron and quizalofop on fatty acid biosynthesis. Weed Sci, 1992; 40: 1-6.
https://doi.org/10.1017/S004317450005685X

8. Chandrasena J., Sagar G. Effect of fluazifop-butyl on the chlorophyll content, fluorescence and chloroplast ultrastructure of Elymus repens leaves. Weed Res, 1987; 27: 103-112.
https://doi.org/10.1111/j.1365-3180.1987.tb00742.x

9. Chen S., Dickman M. Bcl-2 family members localize to tobacco chloroplasts and inhibit programmed cell death induced by chloroplast-targeted herbicides. J. Exp. Bot, 2004; 55: 2617-2623.
https://doi.org/10.1093/jxb/erh275
PMid:15475374

10. Chichkova N., Shaw J., Galiullina R. et al. Phytaspase, a relocalisable cell death promoting plant protease with caspase specificity. The EMBO Journal, 2010; 29: 1149-1161.
https://doi.org/10.1038/emboj.2010.1
PMid:20111004 PMCid:PMC2845272

11. Dan Hess F. Light-dependent herbicides: an overview. Weed Sci, 2000: 160-170.
https://doi.org/10.1614/0043-1745(2000)048[0160:LDHAO]2.0.CO;2

12. Danon A., Delorme V., Mailhac N., Gallois P. Plant programmed cell death: A common way to die. Plant Physiology and Biochemistry, 2000; 8: 647-655.
https://doi.org/10.1016/S0981-9428(00)01178-5

13. Dat J., Pellinen R., Beeckman T. et al. Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco. Plant J, 2003; 33: 621-632.
https://doi.org/10.1046/j.1365-313X.2003.01655.x
PMid:12609037

14. Delye C. Weed resistanse to acetyl coenzyme A carboxylase inhibitors: un update. Weed Sci, 2005; 53: 728-746.
https://doi.org/10.1614/WS-04-203R.1

15. Doyle J.J., Doyle J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 1987; 19: 11-15.

16. de Freitas D., Coelho M., Souza M. et al. Introduction of anti-apoptotic baculovirus p35 gene in passion fruit induces herbicide tolerance, reduced bacterial lesions, but does not inhibit passion fruit woodiness disease progress induced by cowpea aphid-borne mosaic virus (CABMV). Biotechnol. Lett, 2007; 29: 79-87.
https://doi.org/10.1007/s10529-006-9201-9
PMid:17016672

17. de Pinto M., Locato V., de Gara L. Redox regulation in plant programmed cell death. Plant, Cell and Environment, 2012; 35: 234-244.
https://doi.org/10.1111/j.1365-3040.2011.02387.x
PMid:21711357

18. Drew M., He C., Morgan P. Programmed Cell Death in Animals and Plants. Oxford: BIOS Scientific Publishers Ltd, 2000: 183-192.

19. Gadjev I., Stone J., Gechev T. Programmed cell death in plants: new insights into redox regulation and the role of hydrogen peroxide. International Review of Cell and Molecular Biology, 2008; 270: 87-144.
https://doi.org/10.1016/S1937-6448(08)01403-2

20. Graham M. The diphenylether herbicide lactofen induces cell death and expression of defense-related genes in Soybean. Plant Physiology, 2005; 139: 1784-1794.
https://doi.org/10.1104/pp.105.068676
PMid:16299178 PMCid:PMC1310559

21. Gray J. Programmed Cell Death in Plants. London: Blackwell Publishing, 2004. 287 р.
https://doi.org/10.4324/9780203506837

22. Greenberg J. Programmed cell death: a way of life for plants. Proc. Natl. Acad. Sci. USA, 1996; 93: 12094-12097.
https://doi.org/10.1073/pnas.93.22.12094
PMid:8901538 PMCid:PMC37948

23. Kuriyama H., Fukuda H. Developmental programmed cell death in plants. Curr. Opin. Plant Biol, 2002; 5: 568-573.
https://doi.org/10.1016/S1369-5266(02)00305-9

24. Lam E. Controlled cell death, plant survival and development. Nature Rev. Mol. Cell Biol, 2004; 5: 305-15.
https://doi.org/10.1038/nrm1358
PMid:15071555

25. Mitter R., Hallak H. Transgenic tobacco plants with reduced capability to detoxify reactive oxygen intermediates are hyperresponsive to pathogen infection. Proc. Natl. Acad. Sci. USA, 1999; 96: 4165-14170.
https://doi.org/10.1073/pnas.96.24.14165
PMid:10570216 PMCid:PMC24208

26. O'Brien E., Baguley B., Murray B. et al. Early stages of the apoptotic pathway in plant cells are reversible. Plant J, 1998; 13: 803-814.
https://doi.org/10.1046/j.1365-313X.1998.00087.x

27. Pennell R., Lamb C. Programmed cell death in plants. Plant Cell, 1997; 9: 1157-1168.
https://doi.org/10.1105/tpc.9.7.1157
PMid:12237381 PMCid:PMC156988

28. Reape T., Molony E., McCabe P. Programmed cell death in plants: Distinguishing between different modes. Exp. Bot, 2008; 59: 435-44.
https://doi.org/10.1093/jxb/erm258
PMid:18256053

29. Solomon M., Belenghi B., Delledonne M. et al. The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants. Plant Cell, 1999; 11: 431-444.
https://doi.org/10.1105/tpc.11.3.431
PMid:10072402 PMCid:PMC144188

30. Wyllie A., Kerr J., Currie A. Cell death: the significance of apoptosis. Int. Rev. Cytol, 1980; 68: 251-306.
https://doi.org/10.1016/S0074-7696(08)62312-8


Refbacks

  • There are currently no refbacks.


Copyright (c) 2013 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.