PHYSIOLOGICAL ROLE OF PRIONS IN REGULATION OF Ca2+-TRANSPORT AND NEURODEGENERATIVE DISEASES

M. V. Kushkevych, V. V. Vlizlo


DOI: http://dx.doi.org/10.30970/sbi.0701.274

Abstract


Literature data on the role of physiological prion in Ca2+-homeostasis regulation, violation promoting prion-induced neurodegenerations, are summarized. The electrophysiological neuronal disorders and synaptic dysfunction which occur during prion di­seases and are accompanied by changes in intracellular ionized Ca2+ concentration, are described. Short description of Ca2+-transport systems in neurons is presented. Special attention is paid to data obtained in animal models of prion infections and PrP-knocked animals, indicating possible role of PrPc in the process of Ca2+-transport in neurons. In particular, a PrPc mediated participation in functioning of calcium channels due to binding with NR2D-subunit of N-methyl-D-aspartate (NMDA)-receptors of Ca2+-channels, which provides its neuroprotective role, is described. Also, a PrPc participation in the synaptic structure formation and neurotransmission is characterized. The interaction of physiological prion with synapsin-1 and synaptophysin that regulates exo-endoendocytosis synaptic vesicles cycle, was studied. The violation of Ca2+-homeostasis as one of important factors during prion pathologies is characterised.


Keywords


prion infection, physiological prion, Ca2+-transport systems, synapse

References


1. Вербицький П.І. Губчастоподібна енцефалопатія великої рогатої худоби та інші пріонні інфекції. К.: Ветінформ, 2005. 240 с.

2. Влізло В.В., Стадник В.В., Майор Х.Я., Вербицький П.І. Фізіологічний пріон та його роль у функціонуванні клітини. Біологія тварин, 2008; 10(1–2): 9–23.

3. Шкундина И.С., Тер-Аванесян М.Д. Прионы. Успехи биол. химии, 2006; 46: 3–42.

4. Aguzzi A., Calella A.M. Prions: protein aggregation and infectious diseases. Physiol. Rev, 2009; 89: 1105-1152.
https://doi.org/10.1152/physrev.00006.2009
PMid:19789378

5. Alier K., Li Z., Mactavish D. et al. Ionic mechanisms of action of prion protein fragment PrP(106-126) in rat basal forebrain neurons. J. Neurosci. Res, 2010; 88: 2217-2227.
https://doi.org/10.1002/jnr.22372
PMid:20175205

6. Asante E.A., Li Y.G., Gowland I. et al. Pathogenic human prion protein rescues PrP null phenotype in transgenic mice. Neurosci. Lett, 2004; 360: 33-36.
https://doi.org/10.1016/j.neulet.2004.01.049
PMid:15082172

7. Bahadi R., Farrelly P.V., Kenna B.L. et al. Channels formed with a mutant prion protein PrP(82-146) homologous to a 7-kDa fragment in diseased brain of GSS patients. Am. J. Physiol. Cell Physiol, 2003; 285: 862-872.
https://doi.org/10.1152/ajpcell.00077.2003
PMid:12814912

8. Balducci C., Beeg M., Stravalaci M. et al. Synthetic amyloid-beta oligomers impair long-term memory independently of cellular prion protein. Proc. Natl. Acad. Sci. USA, 2010; 2: 2295-2300.
https://doi.org/10.1073/pnas.0911829107
PMid:20133875 PMCid:PMC2836680

9. Barrow P.A., Holmgren C.D., Tapper A.J., Jefferys J.G. Intrinsic physiological and morphological properties of principal cells of the hippocampus and neocortex in hamsters infected with scrapie. Neurobiol. Dis, 1999; 6: 406-423.
https://doi.org/10.1006/nbdi.1999.0255
PMid:10527807

10. Beraldo F.H., Arantes C.P., Santos T.G. et al. Metabotropic glutamate receptors transduce signals for neurite outgrowth after binding of the prion protein to laminin c1 chain. FASEB J, 2011; 25: 265-279.
https://doi.org/10.1096/fj.10-161653
PMid:20876210

11. Beraldo F.H., Arantes C.P., Santos T.G. et al. Role of alpha7 nicotinic acetylcholine receptor in calcium signalling induced by prion protein interaction with stress-inducible protein 1. J. Biol. Chem, 2010; 285: 36542-36550.
https://doi.org/10.1074/jbc.M110.157263
PMid:20837487 PMCid:PMC2978582

12. Bernardi P. Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol. Rev, 1999; 79: 1127-1155.
https://doi.org/10.1152/physrev.1999.79.4.1127
PMid:10508231

13. Berridge M.J, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nature Reviews on Molecular and Cell Biology, 2003; 4: 517-529.
https://doi.org/10.1038/nrm1155
PMid:12838335

14. Berridge M.J. Inositol trisphosphate and calcium signaling mechanisms. Biochimica et Biophysica Acta, 2009; 1793: 933-940.
https://doi.org/10.1016/j.bbamcr.2008.10.005
PMid:19010359

15. Brini M. Ca2+-signalling in mitochondria: mechanism and role in physiology and pathology. Cell Calcium, 2003; 34: 399-405.
https://doi.org/10.1016/S0143-4160(03)00145-3

16. Brini M., Miuzzo M., Pierobon N. et al. The prion protein and its paralogue Doppel affect calcium signaling in Chinese hamster ovary cells. Mol. Biol. Cell, 2005; 16: 2799-2808.
https://doi.org/10.1091/mbc.e04-10-0915
PMid:15788568 PMCid:PMC1142425

17. Bueler H., Aguzzi A., Sailer A. et al. Mice devoid of PrP are resistant to scrapie. Cell, 1993; 73: 1339-1347.
https://doi.org/10.1016/0092-8674(93)90360-3

18. Bueler H., Fischer M., Lang Y. et al. Normal development and behaviour of mice lacking the neuronal cellsurface PrP protein. Nature, 1992; 356: 577-582.
https://doi.org/10.1038/356577a0
PMid:1373228

19. Calella A.M., Farinelli M., Nuvolone M. et al. Prion protein and betarelated synaptic toxicity impairment. EMBO Mol. Med, 2010; 2: 306-314.
https://doi.org/10.1002/emmm.201000082
PMid:20665634 PMCid:PMC2962809

20. Chiti Z., Knutsen O.M., Betmouni S., Greene J.R. An integrated, temporal study of the behavioural, electrophysiological and neuropathological consequences of murine prion disease. Neurobiol. Dis, 2006; 22: 363-373.
https://doi.org/10.1016/j.nbd.2005.12.002
PMid:16431123

21. Colling S.B., Collinge J., Jefferys, J.G. Hippocampal slices from prion protein null mice: disrupted Ca2+-activated K+-currents. Neurosci. Lett, 1996; 209: 49-52.
https://doi.org/10.1016/0304-3940(96)12596-9

22. Collinge J., Whittington M.A., Sidle, K.C. et al. Prion protein is necessary for normal synaptic function. Nature, 1994; 370: 295-297.
https://doi.org/10.1038/370295a0
PMid:8035877

23. Criado J.R., Sanchez-Alavez M., Conti B. et al. Mice devoid of prion protein have cognitive deficits that are rescued by reconstitution of PrP in neurons. Neurobiol. Dis, 2005; 19: 255-265.
https://doi.org/10.1016/j.nbd.2005.01.001
PMid:15837581

24. Cunningham C., Deacon R., Wells H. et al. Synaptic changes characterize early behavioural signs in the ME7 model of murine prion disease. Eur. J. Neurosci, 2003; 17: 2147-2155.
https://doi.org/10.1046/j.1460-9568.2003.02662.x
PMid:12786981

25. Curtis J., Errington M., Bliss T. et al. Age-dependent loss of PTP and LTP in the hippocampus of PrP-null mice. Neurobiol. Dis, 2003; 13: 55-62.
https://doi.org/10.1016/S0969-9961(03)00017-2

26. Demuro A., Mina E., Kayed R. et al. Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J. Biol. Chem, 2005; 280: 17294-17300.
https://doi.org/10.1074/jbc.M500997200
PMid:15722360

27. Ferreiro E., Costa R., Marques S. et al. Involvement of mitochondria in endoplasmic reticulum stress-induced apoptotic cell death pathway triggered by the prion peptide PrP(106-126). J. Neurochem, 2008; 104: 766-776.
https://doi.org/10.1111/j.1471-4159.2007.05048.x
PMid:17995926

28. Ferreiro E., Oliveira C.R., Pereira C.M. The release of calcium from the endoplasmic reticulum induced by amyloid-beta and prion peptides activates the mitochondrial apoptotic pathway. Neurobiol. Dis, 2008; 30: 331-342.
https://doi.org/10.1016/j.nbd.2008.02.003
PMid:18420416

29. Ferreiro E., Resende R., Costa R. et al. An endoplasmic-reticulum-specific apoptotic pathway is involved in prion and amyloid-beta peptides neurotoxicity. Neurobiol. Dis, 2006; 23: 669-678.
https://doi.org/10.1016/j.nbd.2006.05.011
PMid:16844381

30. Florio T., Thellung S., Amico C. et al. Prion protein fragment 106-126 induces apoptotic cell death and impairment of L type voltage-sensitive calcium channel activity in the GH3 cell line. J. Neurosci. Res, 1998; 54: 341-352.
https://doi.org/10.1002/(SICI)1097-4547(19981101)54:3<341::AID-JNR5>3.0.CO;2-G

31. Forloni G., Angeretti N., Chiesa R. et al. Neurotoxicity of a prion protein fragment. Nature, 1993; 362: 543-546.
https://doi.org/10.1038/362543a0
PMid:8464494

32. Fournier J.G. Cellular prion protein electron microscopy: attempts/limits and clues to a synaptic trait. Implications in neurodegeneration process. Cell Tissue Res, 2008; 332(1): 1-11.
https://doi.org/10.1007/s00441-007-0565-5
PMid:18236081

33. Fuhrmann M., Bittner T., Mitteregger G. et al. Loss of the cellular prion protein affects the Ca2+-homeostasis in hippocampal CA1 neurons. J. Neurochem, 2006; 98: 1876-1885.
https://doi.org/10.1111/j.1471-4159.2006.04011.x
PMid:16945105

34. Gerke V, Creutz CE, Moss SE. Annexins: linking Ca2+-signalling to membrane dynamics. Nature Reviews on Molecular and Cell Biology, 2005; 6: 449-461.
https://doi.org/10.1038/nrm1661
PMid:15928709

35. Gimbel D.A., Nygaard H.B., Coffey E.E. et al. Memory impairment in transgenic Alzheimer mice requires cellular prion protein. J. Neurosci, 2010; 5: 6367-6374.
https://doi.org/10.1523/JNEUROSCI.0395-10.2010
PMid:20445063 PMCid:PMC3323924

36. Gouaux E, Mackinnon R. Principles of selective ion transport in channels and pumps. Science, 2005; 310: 1461-1465.
https://doi.org/10.1126/science.1113666
PMid:16322449

37. Herms J.W., Kretzchmar H.A., Titz S., Keller B.U. Patchclamp analysis of synaptic transmission to cerebellar purkinje cells of prion protein knockout mice. Eur. J. Neurosci, 1995; 7: 2508-2512.
https://doi.org/10.1111/j.1460-9568.1995.tb01049.x
PMid:8845956

38. Herms J.W., Madlung A., Brown D.R., Kretzschmar H.A. Increase of intracellular free Ca2+ in microglia activated by prion protein fragment. Glia, 1997; 21: 253-257.
https://doi.org/10.1002/(SICI)1098-1136(199710)21:2<253::AID-GLIA8>3.0.CO;2-7

39. Herms J.W., Tings T., Dunker S., Kretzschmar H.A. Prion protein affects Ca2+-activated K+-currents in cerebellar Purkinje cells. Neurobiol. Dis, 2001; 8: 324-330.
https://doi.org/10.1006/nbdi.2000.0369
PMid:11300727

40. Hetz C., Russelakis-Carneiro M., Maundrell K. et al. Caspase-12 and endoplasmic reticulum stress mediate neurotoxicity of pathological prion protein. EMBO J, 2003; 22: 5435-5445.
https://doi.org/10.1093/emboj/cdg537
PMid:14532116 PMCid:PMC213791

41. Jeffrey M., Halliday W.G., Bell J. et al. Synapse loss associated with abnormal PrP precedes neuronal degeneration in the scrapie-infected murine hippocampus. Neuropathol. Appl. Neurobiol, 2000; 26: 41-54.
https://doi.org/10.1046/j.1365-2990.2000.00216.x
PMid:10736066

42. Jin J.K., Choi J.K., Lee H.G. et al. Increased expression of CaM kinase II alpha in the brains of scrapie-infected mice. Neurosci. Lett, 1999; 273: 37-40.
https://doi.org/10.1016/S0304-3940(99)00622-9

43. Johnston A.R., Black C., Fraser J., MacLeod N. Scrapie infection alters the membrane and synaptic properties of mouse hippocampal CA1 pyramidal neurons. J. Physiol, 1997; 500: 1-15.
https://doi.org/10.1113/jphysiol.1997.sp021994
PMid:9097928

44. Johnston A.R., Fraser J.R., Jeffrey M., MacLeod N. Alterations in potassium currents may trigger neurodegeneration in murine scrapie. Exp. Neurol, 1998; 151: 326-333.
https://doi.org/10.1006/exnr.1998.6817
PMid:9628767

45. Johnston A.R., Fraser J.R., Jeffrey M., MacLeod N. Synaptic plasticity in the CA1 area of the hippocampus of scrapie-infected mice. Neurobiol. Dis, 1998; 5: 188-195.
https://doi.org/10.1006/nbdi.1998.0194
PMid:9848090

46. Jouaville L.S., Pinton P., Bastianutto C. et al. Regulation of mitochondrial ATP synthesis by calcium: evidence for a long-term metabolic priming. Proc. Natl. Acad. Sci. USA, 1999; 96: 13807-13812.
https://doi.org/10.1073/pnas.96.24.13807
PMid:10570154 PMCid:PMC24146

47. Kagan B.L., Azimov R., Azimova R. Amyloid peptide channels. J. Membr. Biol, 2004; 202: 1-10.
https://doi.org/10.1007/s00232-004-0709-4
PMid:15702375

48. Kawahara M., Kuroda Y., Arispe N., Rojas E. Alzheimer's beta-amyloid, human islet amylin, and prion protein fragment evoke intracellular free calcium elevations by a common mechanism in a hypothalamic GnRH neuronal cell line. J. Biol. Chem, 2000; 275: 14077-14083.
https://doi.org/10.1074/jbc.275.19.14077
PMid:10799482

49. Kessels H.W., Nguyen L.N., Nabavi S., Malinow R. The prion protein as a receptor for amyloid-beta. Nature, 2010; 12: 3-4.
https://doi.org/10.1038/nature09217
PMid:20703260 PMCid:PMC3057871

50. Khosravani H., Zhang Y., Tsutsui S. et al. Prion protein attenuates excitotoxicity by inhibiting NMDA receptors. J. Cell Biol, 2008; 181: 551-565.
https://doi.org/10.1083/jcb.200711002
PMid:18443219 PMCid:PMC2364707

51. Kim J.H., Anwyl R., Suh Y.H. et al. Use-dependent effects of amyloidogenic fragments of (beta)-amyloid precursor protein on synaptic plasticity in rat hippocampus in vivo. J. Neurosci, 2001; 15: 1327-1333.
https://doi.org/10.1523/JNEUROSCI.21-04-01327.2001

52. Kourie J.I., Culverson A. Prion peptide fragment PrP (106-126) forms distinct cation channel types. J. Neurosci. Res, 2000; 62: 120-133.
https://doi.org/10.1002/1097-4547(20001001)62:1<120::AID-JNR13>3.0.CO;2-2

53. Kourie J.I., Culverson A.L., Farrelly P.V. et al. Heterogeneous amyloid-formed ion channels as a common cytotoxic mechanism: implications for therapeutic strategies against amyloidosis. Cell Biochem. Biophys, 2002; 36 191-207.
https://doi.org/10.1385/CBB:36:2-3:191

54. Kristensson K., Feuerstein B., Taraboulos A. et al. Scrapie prions alter receptor-mediated calcium responses in cultured cells. Neurology, 1993; 43: 2335-2341.
https://doi.org/10.1212/WNL.43.11.2335
PMid:8232952

55. Lauren J., Gimbel D. A., Nygaard H.B. et al. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature, 2009; 26: 1128-1132.
https://doi.org/10.1038/nature07761
PMid:19242475 PMCid:PMC2748841

56. Lazzari C., Peggion C., Stella R. et al. Cellular prion protein is implicated in the regulation of local Ca2+-movements in cerebellar granule neurons. J. Neurochem, 2011; 116: 881-890.
https://doi.org/10.1111/j.1471-4159.2010.07015.x
PMid:21214552

57. Lesne S., Koh M.T., Kotilinek L. et al. A specific amyloid-beta protein assembly in the brain impairs memory. Nature, 2006; 16: 352-357.
https://doi.org/10.1038/nature04533
PMid:16541076

58. Li P., Nijhawan D., Budihardjo I. et al. Cytochrome c and d ATP-dependent formation of Apaf-1-caspase-9 complex initiates an apoptotic protease cascade. Cell, 1997; 91: 479-489.
https://doi.org/10.1016/S0092-8674(00)80434-1

59. Li S., Hong S., Shepardson N.E. et al. Soluble oligomers of amyloid Beta protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron, 2009; 25: 788-801.
https://doi.org/10.1016/j.neuron.2009.05.012
PMid:19555648 PMCid:PMC2702854

60. Liang J., Luo G., Ning X. et al. Differential expression of calcium-related genes in gastric cancer cells transfected with cellular prion protein. Biochem. Cell Biol, 2007; 85: 375-383.
https://doi.org/10.1139/O07-052
PMid:17612632

61. Lin M.C., Mirzabekov T., Kagan B.L. Channel formation by a neurotoxic prion protein fragment. J. Biol. Chem, 1997; 272: 44-47.
https://doi.org/10.1074/jbc.272.1.44
PMid:8995224

62. Linden R., Martins V.R., Prado M.A. et al. Physiology of the prion protein. Physiol. Rev, 2008; 88: 673-728.
https://doi.org/10.1152/physrev.00007.2007
PMid:18391177

63. Lledo P.M., Tremblay P., DeArmond S.J. et al. Mice deficient for prion protein exhibit normal neuronal excitability and synaptic transmission in the hippocampus. Proc. Natl. Acad. Sci. USA, 1996; 93: 2403-2407.
https://doi.org/10.1073/pnas.93.6.2403
PMid:8637886 PMCid:PMC39809

64. Lopes M.H., Hajj G.N., Muras A.G. et al. Interaction of cellular prion and stress-inducible protein 1 promotes neuritogenesis and neuroprotection by distinct signaling pathways. J. Neurosci, 2005; 25: 11330-11339.
https://doi.org/10.1523/JNEUROSCI.2313-05.2005
PMid:16339028

65. Malenka R.C., Bear M.F. LTP and LTD: an embarrassment of riches. Neuron, 2004; 44: 5-21.
https://doi.org/10.1016/j.neuron.2004.09.012
PMid:15450156

66. Mallucci G.R., Ratte S., Asante E.A. et al. Post-natal knockout of prion protein alters hippocampal CA1 properties, but does not result in neurodegeneration. EMBO Jour, 2002; 21: 202-210.
https://doi.org/10.1093/emboj/21.3.202
PMid:11823413 PMCid:PMC125833

67. Mallucci G.R., White M.D., Farmer M. et al. Targeting cellular prion protein reverses early cognitive deficits and neurophysiological dysfunction in prion-infected mice. Neuron, 2007; 53: 325-335.
https://doi.org/10.1016/j.neuron.2007.01.005
PMid:17270731

68. Manson J.C., Clarke A.R., Hooper M.L. et al. 129/Ola mice carrying a null mutation in PrP that abolishes mRNA production are developmentally normal. Mol. Neurobiol, 1994; 8: 121-127.
https://doi.org/10.1007/BF02780662
PMid:7999308

69. Manson J.C., Hope J., Clarke A.R. et al. PrP gene dosage and long term potentiation. Neurodegeneration, 1995; 4: 113-115.
https://doi.org/10.1006/neur.1995.0014
PMid:7600180

70. Mattson M.P. Calcium and neurodegeneration. Aging Cell, 2007; 6: 337-350.
https://doi.org/10.1111/j.1474-9726.2007.00275.x
PMid:17328689

71. Mattson M.P., LaFerla F.M., Chan S.L. et al. Calcium signaling in the ER: its role in neuronal plasticity and neurodegenerative disorders. Trends Neurosci, 2000; 23: 222-229.
https://doi.org/10.1016/S0166-2236(00)01548-4

72. Mukherjee A., Morales-Scheihing, D., Gonzalez-Romero et al. Calcineurin inhibition at the clinical phase of prion disease reduces neurodegeneration, improves behavioral alterations and increases animal survival. PLoS Pathog, 2010; 6: 100-138.
https://doi.org/10.1371/journal.ppat.1001138
PMid:20949081 PMCid:PMC2951383

73. Nazor K.E., Seward T., Telling G.C. Motor behavioral and neuropathological deficits in mice deficient for normal prion protein expression. Biochim. Biophys. Acta, 2007; 1772: 645-653.
https://doi.org/10.1016/j.bbadis.2007.04.004
PMid:17531449 PMCid:PMC3025296

74. Nguyen P.V., Duffy S.N., Young J.Z. Differential maintenance and frequency-dependent tuning of LTP at hippocampal synapses of specific strains of inbred mice. J. Neurophysiol, 2000; 84: 2484-2493.
https://doi.org/10.1152/jn.2000.84.5.2484
PMid:11067991

75. Oddo S., Caccamo A., Shepherd J.D. et al. Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron, 2003; 31: 409-421.
https://doi.org/10.1016/S0896-6273(03)00434-3

76. Parkash J., Asotra K. Calcium wave signaling in cancer cells. Life Sci, 2010; 87(19-22): 587-595.
https://doi.org/10.1016/j.lfs.2010.09.013
PMid:20875431 PMCid:PMC2974775

77. Peggion C., Bertoli A., Sorgato M.C. Possible role for Ca2+ in the pathophysiology of the prion protein? BioFactors, 2011; 37: 241-249.
https://doi.org/10.1002/biof.161
PMid:21698700

78. Powell A.D., Toescu E.C., Collinge J., Jefferys J.G. Alterations in Ca2+-buffering in prion-null mice: association with reduced afterhyperpolarizations in CA1 hippocampal neurons. J. Neurosci, 2008; 28: 3877-3886.
https://doi.org/10.1523/JNEUROSCI.0675-08.2008
PMid:18400886

79. Prestori F., Rossi P., Bearzatto B. et al. Altered neuron excitability and synaptic plasticity in the cerebellar granular layer of juvenile prion protein knock-out mice with impaired motor control. J. Neurosci, 2008; 28: 7091-7103.
https://doi.org/10.1523/JNEUROSCI.0409-08.2008
PMid:18614678

80. Prusiner S.B. Novel proteinaceous infectious particles cause scrapie. Science, 1982; 216: 136-144.
https://doi.org/10.1126/science.6801762
PMid:6801762

81. Prusiner S.B. Prions. Proc. Natl. Acad. Sci. USA,1998; 95: 13363-13383.
https://doi.org/10.1073/pnas.95.23.13363
PMid:9811807 PMCid:PMC33918

82. Ramljak S., Asif A.R., Armstrong V.W. et al. Physiological role of the cellular prion protein (PrPc): protein profiling study in two cell culture systems. J. Proteome Res, 2008; 7: 2681-2695.
https://doi.org/10.1021/pr7007187
PMid:18537284

83. Ramsey IS, Delling M, Clapham DE. An introduction to TRP channels. Annual Reviews of Physiology, 2006; 68:619-647.
https://doi.org/10.1146/annurev.physiol.68.040204.100431
PMid:16460286

84. Rangel A., Burgaya F., Gavın R. et al. Enhanced susceptibility of Prnp-deficient mice to kainateinduced seizures, neuronal apoptosis, and death: role of AMPA/kainate receptors. J. Neurosci. Res, 2007; 85: 2741-2755.
https://doi.org/10.1002/jnr.21215
PMid:17304577

85. Riemenschneider M., Klopp N., Xiang W. et al. Prion protein codon 129 polymorphism and risk of Alzheimer disease. Neurology, 2004; 27: 364-366.
https://doi.org/10.1212/01.WNL.0000130198.72589.69
PMid:15277640

86. Sah P., Davies P. Calcium-activated potassium currents in mammalian neurons. Clin. Exp. Pharmacol. Physiol, 2000; 27: 657-663.
https://doi.org/10.1046/j.1440-1681.2000.03317.x
PMid:10972528

87. Sandberg M.K., Wallen P., Wikstrom, M.A., Kristensson K. Scrapie-infected GT1-1 cells show impaired function of voltagegated N-type calcium channels (Ca(v) 2.2) which is ameliorated by quinacrine treatment. Neurobiol. Dis, 2004; 15: 143-151.
https://doi.org/10.1016/j.nbd.2003.09.006
PMid:14751779

88. Shankar G.M., Li S., Mehta T.H. et al. Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat. Med, 2008; 14: 837-842.
https://doi.org/10.1038/nm1782
PMid:18568035 PMCid:PMC2772133

89. Sorgato M.C., Bertoli A. From cell protection to death: May Ca2+-signals explain the chameleonic attributes of the mammalian prion protein? Biochemical and Biophysical Research Communications, 2009; 379: 171-174.
https://doi.org/10.1016/j.bbrc.2008.12.026
PMid:19101513

90. Sorgato M.C., Peggion C., Bertoli A. Is, indeed, the prion protein a Harlequin servant of ''many'' masters? Prion, 2009; 3: 202-205.
https://doi.org/10.4161/pri.3.4.10012
PMid:19887913 PMCid:PMC2807692

91. Spudich A., Frigg R., Kilic E. et al. Aggravation of ischemic brain injury by prion protein deficiency: role of ERK-1/-2 and STAT-1. Neurobiol. Dis, 2005; 20: 442-449.
https://doi.org/10.1016/j.nbd.2005.04.002
PMid:15893468

92. Starkov A.A., Beal F.M. Portal to Alzheimer's disease. Nature Medicine, 2008; 14: 1008-1021.
https://doi.org/10.1038/nm1008-1020
PMid:18841137 PMCid:PMC4511481

93. Steele A.D., Lindquist S., Aguzzi A. The prion protein knockout mouse: a phenotype under challenge. Prion, 2007; 1: 83-93.
https://doi.org/10.4161/pri.1.2.4346
PMid:19164918 PMCid:PMC2634447

94. Stella R., Massimino M.L., Sandri M. et al. Cellular prion protein promotes regeneration of adult muscle tissue. Mol. Cell. Biol, 2010; 30: 4864-4876.
https://doi.org/10.1128/MCB.01040-09
PMid:20679477 PMCid:PMC2950540

95. Thellung S., Florio T., Corsaro A. et al. Intracellular mechanisms mediating the neuronal death and astrogliosis induced by the prion protein fragment 106-126. Int. J. Dev. Neurosci, 2000; 18: 481-492.
https://doi.org/10.1016/S0736-5748(00)00005-8

96. Thellung S., Florio T., Villa V. et al. Apoptotic cell death and impairment of L-type voltage-sensitive calcium channel activity in rat cerebellar granule cells treated with the prion protein fragment 106-126. Neurobiol. Dis, 2000; 7: 299-309.
https://doi.org/10.1006/nbdi.2000.0301
PMid:10964602

97. Torres M., Castillo K., Armisen R. et al. Prion protein misfolding affects calcium homeostasis and sensitizes cells to endoplasmic reticulum stress. PLoS One, 2010; 5: 15658.
https://doi.org/10.1371/journal.pone.0015658
PMid:21209925 PMCid:PMC3012133

98. Voigtlander T., Kloppel S., Birner P. et al. Marked increase of neuronal prion protein immunoreactivity in Alzheimer's disease and human prion diseases. Acta Neuropathol, 2001; 101: 417-423.

99. Walsh D.M., Klyubin I., Fadeeva J.V. et al. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal longterm potentiation in vivo. Nature, 2002; 4: 535-539.
https://doi.org/10.1038/416535a
PMid:11932745

100. Walsh D.M., Selkoe D.J. Abeta oligomers - a decade of discovery. J. Neurochem, 2007; 101: 1172-1184.
https://doi.org/10.1111/j.1471-4159.2006.04426.x
PMid:17286590

101. Walz R., Amaral O.B., Rockenbach I.C. et al. Increased sensitivity to seizures in mice lacking cellular prion protein. Epilepsia, 1999; 40: 1679-1682.
https://doi.org/10.1111/j.1528-1157.1999.tb01583.x
PMid:10612329

102. Wang H.W., Pasternak J.F., Kuo H. et al. Soluble oligomers of beta amyloid (1-42) inhibit long-term potentiation but not long-term depression in rat dentate gyrus. Brain Res, 2002; 11: 133-140.
https://doi.org/10.1016/S0006-8993(01)03058-X

103. Weise J., Sandau R., Schwarting S. et al. Deletion of cellular prion protein results in reduced Akt activation, enhanced postischemic caspase-3 activation, and exacerbation of ischemic brain injury. Stroke, 2006; 37: 1296-1300.
https://doi.org/10.1161/01.STR.0000217262.03192.d4
PMid:16574930

104. Weiss E., Ramljak S., Asif A.R. et al. Cellular prion protein overexpression disturbs cellular homeostasis in SH-SY5Y neuroblastoma cells but does not alter p53 expression: a proteomic study. Neuroscience, 2010; 169: 1640-1650.
https://doi.org/10.1016/j.neuroscience.2010.06.013
PMid:20547212

105. Westergard L., Christensen H., Harris D. The cellular prion protein (PrPC): its physiological function and role in disease. Biochim. Biophys. Acta, 2007; 1772: 629-644 .
https://doi.org/10.1016/j.bbadis.2007.02.011
PMid:17451912 PMCid:PMC1986710

106. Whittington M.A., Sidle K.C., Gowland I. et al. Rescue of neurophysiological phenotype seen in PrP null mice by transgene encoding human prion protein. Nat. Genet, 1995; 9: 197-201.
https://doi.org/10.1038/ng0295-197
PMid:7719349

107. Wong K., Qiu Y., Hyun W. et al. Decreased receptor-mediated calcium response in prion-infected cells correlates with decreased membrane fluidity and IP3 release. Neurology, 1996; 47: 741-750.
https://doi.org/10.1212/WNL.47.3.741
PMid:8797473

108. Wuthrich K., Riek R. Three-dimensional structures of prion proteins. Adv. Protein Chem, 2001; 57: 55-82.
https://doi.org/10.1016/S0065-3233(01)57018-7

109. Yuan J., Xiao X., Mc Geehan J. et al. Insoluble aggregates and protease-re sistant conformer of prion protein in uninfected human brain. J. Biol. Chem, 2006; 281: 34848-34858.
https://doi.org/10.1074/jbc.M602238200
PMid:16987816

110. Zamponi G.W., Stys P.K. Role of prions in neuroprotection and neurodegeneration: a mechanism involving glutamate receptors? Prion, 2009; 3: 187-189.
https://doi.org/10.4161/pri.3.4.9549
PMid:19684483 PMCid:PMC2807689

111. Zanata S.M., Lopes M.H., Mercadante A.F. et al. Stress-inducible protein 1 is a cell surface ligand for cellular prion that triggers neuroprotection. EMBO J, 2002; 21: 3307-3316.
https://doi.org/10.1093/emboj/cdf325
PMid:12093732 PMCid:PMC125391

112. Zhang C.C., Steele A. D., Lindquist S., Lodish H.F. Prion protein is expressed on long-term repopulating hematopoietic stem cells and is important for their self-renewal. Proc. Natl. Acad. Sci. USA, 2006; 103: 2184-2189.
https://doi.org/10.1073/pnas.0510577103
PMid:16467153 PMCid:PMC1413720

113. Zheng H., Koo E.H. The amyloid precursor protein: beyond amyloid. Mol. Neurodegener, 2006; 3: 1-5.

114. Zou W.Q., Gambetti P. Prion: the chameleon protein. Cell. Mol. Life Sci, 2007; 64 3266-3270.
https://doi.org/10.1007/s00018-007-7380-8
PMid:17965827

115. http://www.fbs.leeds.ac.uk/staff/Hooper_N/prion.htm


Refbacks

  • There are currently no refbacks.


Copyright (c) 2013 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.