PHYSIOLOGICAL ROLE OF PRIONS IN REGULATION OF Ca2+-TRANSPORT AND NEURODEGENERATIVE DISEASES
DOI: http://dx.doi.org/10.30970/sbi.0701.274
Abstract
Literature data on the role of physiological prion in Ca2+-homeostasis regulation, violation promoting prion-induced neurodegenerations, are summarized. The electrophysiological neuronal disorders and synaptic dysfunction which occur during prion diseases and are accompanied by changes in intracellular ionized Ca2+ concentration, are described. Short description of Ca2+-transport systems in neurons is presented. Special attention is paid to data obtained in animal models of prion infections and PrP-knocked animals, indicating possible role of PrPc in the process of Ca2+-transport in neurons. In particular, a PrPc mediated participation in functioning of calcium channels due to binding with NR2D-subunit of N-methyl-D-aspartate (NMDA)-receptors of Ca2+-channels, which provides its neuroprotective role, is described. Also, a PrPc participation in the synaptic structure formation and neurotransmission is characterized. The interaction of physiological prion with synapsin-1 and synaptophysin that regulates exo-endoendocytosis synaptic vesicles cycle, was studied. The violation of Ca2+-homeostasis as one of important factors during prion pathologies is characterised.
Keywords
Full Text:
PDF (Українська)References
1. Вербицький П.І. Губчастоподібна енцефалопатія великої рогатої худоби та інші пріонні інфекції. К.: Ветінформ, 2005. 240 с.
2. Влізло В.В., Стадник В.В., Майор Х.Я., Вербицький П.І. Фізіологічний пріон та його роль у функціонуванні клітини. Біологія тварин, 2008; 10(1–2): 9–23.
3. Шкундина И.С., Тер-Аванесян М.Д. Прионы. Успехи биол. химии, 2006; 46: 3–42.
4. Aguzzi A., Calella A.M. Prions: protein aggregation and infectious diseases. Physiol. Rev, 2009; 89: 1105-1152. | |
| |
5. Alier K., Li Z., Mactavish D. et al. Ionic mechanisms of action of prion protein fragment PrP(106-126) in rat basal forebrain neurons. J. Neurosci. Res, 2010; 88: 2217-2227. | |
| |
6. Asante E.A., Li Y.G., Gowland I. et al. Pathogenic human prion protein rescues PrP null phenotype in transgenic mice. Neurosci. Lett, 2004; 360: 33-36. | |
| |
7. Bahadi R., Farrelly P.V., Kenna B.L. et al. Channels formed with a mutant prion protein PrP(82-146) homologous to a 7-kDa fragment in diseased brain of GSS patients. Am. J. Physiol. Cell Physiol, 2003; 285: 862-872. | |
| |
8. Balducci C., Beeg M., Stravalaci M. et al. Synthetic amyloid-beta oligomers impair long-term memory independently of cellular prion protein. Proc. Natl. Acad. Sci. USA, 2010; 2: 2295-2300. | |
| |
9. Barrow P.A., Holmgren C.D., Tapper A.J., Jefferys J.G. Intrinsic physiological and morphological properties of principal cells of the hippocampus and neocortex in hamsters infected with scrapie. Neurobiol. Dis, 1999; 6: 406-423. | |
| |
10. Beraldo F.H., Arantes C.P., Santos T.G. et al. Metabotropic glutamate receptors transduce signals for neurite outgrowth after binding of the prion protein to laminin c1 chain. FASEB J, 2011; 25: 265-279. | |
| |
11. Beraldo F.H., Arantes C.P., Santos T.G. et al. Role of alpha7 nicotinic acetylcholine receptor in calcium signalling induced by prion protein interaction with stress-inducible protein 1. J. Biol. Chem, 2010; 285: 36542-36550. | |
| |
12. Bernardi P. Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol. Rev, 1999; 79: 1127-1155. | |
| |
13. Berridge M.J, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nature Reviews on Molecular and Cell Biology, 2003; 4: 517-529. | |
| |
14. Berridge M.J. Inositol trisphosphate and calcium signaling mechanisms. Biochimica et Biophysica Acta, 2009; 1793: 933-940. | |
| |
15. Brini M. Ca2+-signalling in mitochondria: mechanism and role in physiology and pathology. Cell Calcium, 2003; 34: 399-405. | |
| |
16. Brini M., Miuzzo M., Pierobon N. et al. The prion protein and its paralogue Doppel affect calcium signaling in Chinese hamster ovary cells. Mol. Biol. Cell, 2005; 16: 2799-2808. | |
| |
17. Bueler H., Aguzzi A., Sailer A. et al. Mice devoid of PrP are resistant to scrapie. Cell, 1993; 73: 1339-1347. | |
| |
18. Bueler H., Fischer M., Lang Y. et al. Normal development and behaviour of mice lacking the neuronal cellsurface PrP protein. Nature, 1992; 356: 577-582. | |
| |
19. Calella A.M., Farinelli M., Nuvolone M. et al. Prion protein and betarelated synaptic toxicity impairment. EMBO Mol. Med, 2010; 2: 306-314. | |
| |
20. Chiti Z., Knutsen O.M., Betmouni S., Greene J.R. An integrated, temporal study of the behavioural, electrophysiological and neuropathological consequences of murine prion disease. Neurobiol. Dis, 2006; 22: 363-373. | |
| |
21. Colling S.B., Collinge J., Jefferys, J.G. Hippocampal slices from prion protein null mice: disrupted Ca2+-activated K+-currents. Neurosci. Lett, 1996; 209: 49-52. | |
| |
22. Collinge J., Whittington M.A., Sidle, K.C. et al. Prion protein is necessary for normal synaptic function. Nature, 1994; 370: 295-297. | |
| |
23. Criado J.R., Sanchez-Alavez M., Conti B. et al. Mice devoid of prion protein have cognitive deficits that are rescued by reconstitution of PrP in neurons. Neurobiol. Dis, 2005; 19: 255-265. | |
| |
24. Cunningham C., Deacon R., Wells H. et al. Synaptic changes characterize early behavioural signs in the ME7 model of murine prion disease. Eur. J. Neurosci, 2003; 17: 2147-2155. | |
| |
25. Curtis J., Errington M., Bliss T. et al. Age-dependent loss of PTP and LTP in the hippocampus of PrP-null mice. Neurobiol. Dis, 2003; 13: 55-62. | |
| |
26. Demuro A., Mina E., Kayed R. et al. Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J. Biol. Chem, 2005; 280: 17294-17300. | |
| |
27. Ferreiro E., Costa R., Marques S. et al. Involvement of mitochondria in endoplasmic reticulum stress-induced apoptotic cell death pathway triggered by the prion peptide PrP(106-126). J. Neurochem, 2008; 104: 766-776. | |
| |
28. Ferreiro E., Oliveira C.R., Pereira C.M. The release of calcium from the endoplasmic reticulum induced by amyloid-beta and prion peptides activates the mitochondrial apoptotic pathway. Neurobiol. Dis, 2008; 30: 331-342. | |
| |
29. Ferreiro E., Resende R., Costa R. et al. An endoplasmic-reticulum-specific apoptotic pathway is involved in prion and amyloid-beta peptides neurotoxicity. Neurobiol. Dis, 2006; 23: 669-678. | |
| |
30. Florio T., Thellung S., Amico C. et al. Prion protein fragment 106-126 induces apoptotic cell death and impairment of L type voltage-sensitive calcium channel activity in the GH3 cell line. J. Neurosci. Res, 1998; 54: 341-352. | |
| |
31. Forloni G., Angeretti N., Chiesa R. et al. Neurotoxicity of a prion protein fragment. Nature, 1993; 362: 543-546. | |
| |
32. Fournier J.G. Cellular prion protein electron microscopy: attempts/limits and clues to a synaptic trait. Implications in neurodegeneration process. Cell Tissue Res, 2008; 332(1): 1-11. | |
| |
33. Fuhrmann M., Bittner T., Mitteregger G. et al. Loss of the cellular prion protein affects the Ca2+-homeostasis in hippocampal CA1 neurons. J. Neurochem, 2006; 98: 1876-1885. | |
| |
34. Gerke V, Creutz CE, Moss SE. Annexins: linking Ca2+-signalling to membrane dynamics. Nature Reviews on Molecular and Cell Biology, 2005; 6: 449-461. | |
| |
35. Gimbel D.A., Nygaard H.B., Coffey E.E. et al. Memory impairment in transgenic Alzheimer mice requires cellular prion protein. J. Neurosci, 2010; 5: 6367-6374. | |
| |
36. Gouaux E, Mackinnon R. Principles of selective ion transport in channels and pumps. Science, 2005; 310: 1461-1465. | |
| |
37. Herms J.W., Kretzchmar H.A., Titz S., Keller B.U. Patchclamp analysis of synaptic transmission to cerebellar purkinje cells of prion protein knockout mice. Eur. J. Neurosci, 1995; 7: 2508-2512. | |
| |
38. Herms J.W., Madlung A., Brown D.R., Kretzschmar H.A. Increase of intracellular free Ca2+ in microglia activated by prion protein fragment. Glia, 1997; 21: 253-257. | |
| |
39. Herms J.W., Tings T., Dunker S., Kretzschmar H.A. Prion protein affects Ca2+-activated K+-currents in cerebellar Purkinje cells. Neurobiol. Dis, 2001; 8: 324-330. | |
| |
40. Hetz C., Russelakis-Carneiro M., Maundrell K. et al. Caspase-12 and endoplasmic reticulum stress mediate neurotoxicity of pathological prion protein. EMBO J, 2003; 22: 5435-5445. | |
| |
41. Jeffrey M., Halliday W.G., Bell J. et al. Synapse loss associated with abnormal PrP precedes neuronal degeneration in the scrapie-infected murine hippocampus. Neuropathol. Appl. Neurobiol, 2000; 26: 41-54. | |
| |
42. Jin J.K., Choi J.K., Lee H.G. et al. Increased expression of CaM kinase II alpha in the brains of scrapie-infected mice. Neurosci. Lett, 1999; 273: 37-40. | |
| |
43. Johnston A.R., Black C., Fraser J., MacLeod N. Scrapie infection alters the membrane and synaptic properties of mouse hippocampal CA1 pyramidal neurons. J. Physiol, 1997; 500: 1-15. | |
| |
44. Johnston A.R., Fraser J.R., Jeffrey M., MacLeod N. Alterations in potassium currents may trigger neurodegeneration in murine scrapie. Exp. Neurol, 1998; 151: 326-333. | |
| |
45. Johnston A.R., Fraser J.R., Jeffrey M., MacLeod N. Synaptic plasticity in the CA1 area of the hippocampus of scrapie-infected mice. Neurobiol. Dis, 1998; 5: 188-195. | |
| |
46. Jouaville L.S., Pinton P., Bastianutto C. et al. Regulation of mitochondrial ATP synthesis by calcium: evidence for a long-term metabolic priming. Proc. Natl. Acad. Sci. USA, 1999; 96: 13807-13812. | |
| |
47. Kagan B.L., Azimov R., Azimova R. Amyloid peptide channels. J. Membr. Biol, 2004; 202: 1-10. | |
| |
48. Kawahara M., Kuroda Y., Arispe N., Rojas E. Alzheimer's beta-amyloid, human islet amylin, and prion protein fragment evoke intracellular free calcium elevations by a common mechanism in a hypothalamic GnRH neuronal cell line. J. Biol. Chem, 2000; 275: 14077-14083. | |
| |
49. Kessels H.W., Nguyen L.N., Nabavi S., Malinow R. The prion protein as a receptor for amyloid-beta. Nature, 2010; 12: 3-4. | |
| |
50. Khosravani H., Zhang Y., Tsutsui S. et al. Prion protein attenuates excitotoxicity by inhibiting NMDA receptors. J. Cell Biol, 2008; 181: 551-565. | |
| |
51. Kim J.H., Anwyl R., Suh Y.H. et al. Use-dependent effects of amyloidogenic fragments of (beta)-amyloid precursor protein on synaptic plasticity in rat hippocampus in vivo. J. Neurosci, 2001; 15: 1327-1333. | |
| |
52. Kourie J.I., Culverson A. Prion peptide fragment PrP (106-126) forms distinct cation channel types. J. Neurosci. Res, 2000; 62: 120-133. | |
| |
53. Kourie J.I., Culverson A.L., Farrelly P.V. et al. Heterogeneous amyloid-formed ion channels as a common cytotoxic mechanism: implications for therapeutic strategies against amyloidosis. Cell Biochem. Biophys, 2002; 36 191-207. | |
| |
54. Kristensson K., Feuerstein B., Taraboulos A. et al. Scrapie prions alter receptor-mediated calcium responses in cultured cells. Neurology, 1993; 43: 2335-2341. | |
| |
55. Lauren J., Gimbel D. A., Nygaard H.B. et al. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature, 2009; 26: 1128-1132. | |
| |
56. Lazzari C., Peggion C., Stella R. et al. Cellular prion protein is implicated in the regulation of local Ca2+-movements in cerebellar granule neurons. J. Neurochem, 2011; 116: 881-890. | |
| |
57. Lesne S., Koh M.T., Kotilinek L. et al. A specific amyloid-beta protein assembly in the brain impairs memory. Nature, 2006; 16: 352-357. | |
| |
58. Li P., Nijhawan D., Budihardjo I. et al. Cytochrome c and d ATP-dependent formation of Apaf-1-caspase-9 complex initiates an apoptotic protease cascade. Cell, 1997; 91: 479-489. | |
| |
59. Li S., Hong S., Shepardson N.E. et al. Soluble oligomers of amyloid Beta protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron, 2009; 25: 788-801. | |
| |
60. Liang J., Luo G., Ning X. et al. Differential expression of calcium-related genes in gastric cancer cells transfected with cellular prion protein. Biochem. Cell Biol, 2007; 85: 375-383. | |
| |
61. Lin M.C., Mirzabekov T., Kagan B.L. Channel formation by a neurotoxic prion protein fragment. J. Biol. Chem, 1997; 272: 44-47. | |
| |
62. Linden R., Martins V.R., Prado M.A. et al. Physiology of the prion protein. Physiol. Rev, 2008; 88: 673-728. | |
| |
63. Lledo P.M., Tremblay P., DeArmond S.J. et al. Mice deficient for prion protein exhibit normal neuronal excitability and synaptic transmission in the hippocampus. Proc. Natl. Acad. Sci. USA, 1996; 93: 2403-2407. | |
| |
64. Lopes M.H., Hajj G.N., Muras A.G. et al. Interaction of cellular prion and stress-inducible protein 1 promotes neuritogenesis and neuroprotection by distinct signaling pathways. J. Neurosci, 2005; 25: 11330-11339. | |
| |
65. Malenka R.C., Bear M.F. LTP and LTD: an embarrassment of riches. Neuron, 2004; 44: 5-21. | |
| |
66. Mallucci G.R., Ratte S., Asante E.A. et al. Post-natal knockout of prion protein alters hippocampal CA1 properties, but does not result in neurodegeneration. EMBO Jour, 2002; 21: 202-210. | |
| |
67. Mallucci G.R., White M.D., Farmer M. et al. Targeting cellular prion protein reverses early cognitive deficits and neurophysiological dysfunction in prion-infected mice. Neuron, 2007; 53: 325-335. | |
| |
68. Manson J.C., Clarke A.R., Hooper M.L. et al. 129/Ola mice carrying a null mutation in PrP that abolishes mRNA production are developmentally normal. Mol. Neurobiol, 1994; 8: 121-127. | |
| |
69. Manson J.C., Hope J., Clarke A.R. et al. PrP gene dosage and long term potentiation. Neurodegeneration, 1995; 4: 113-115. | |
| |
70. Mattson M.P. Calcium and neurodegeneration. Aging Cell, 2007; 6: 337-350. | |
| |
71. Mattson M.P., LaFerla F.M., Chan S.L. et al. Calcium signaling in the ER: its role in neuronal plasticity and neurodegenerative disorders. Trends Neurosci, 2000; 23: 222-229. | |
| |
72. Mukherjee A., Morales-Scheihing, D., Gonzalez-Romero et al. Calcineurin inhibition at the clinical phase of prion disease reduces neurodegeneration, improves behavioral alterations and increases animal survival. PLoS Pathog, 2010; 6: 100-138. | |
| |
73. Nazor K.E., Seward T., Telling G.C. Motor behavioral and neuropathological deficits in mice deficient for normal prion protein expression. Biochim. Biophys. Acta, 2007; 1772: 645-653. | |
| |
74. Nguyen P.V., Duffy S.N., Young J.Z. Differential maintenance and frequency-dependent tuning of LTP at hippocampal synapses of specific strains of inbred mice. J. Neurophysiol, 2000; 84: 2484-2493. | |
| |
75. Oddo S., Caccamo A., Shepherd J.D. et al. Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron, 2003; 31: 409-421. | |
| |
76. Parkash J., Asotra K. Calcium wave signaling in cancer cells. Life Sci, 2010; 87(19-22): 587-595. | |
| |
77. Peggion C., Bertoli A., Sorgato M.C. Possible role for Ca2+ in the pathophysiology of the prion protein? BioFactors, 2011; 37: 241-249. | |
| |
78. Powell A.D., Toescu E.C., Collinge J., Jefferys J.G. Alterations in Ca2+-buffering in prion-null mice: association with reduced afterhyperpolarizations in CA1 hippocampal neurons. J. Neurosci, 2008; 28: 3877-3886. | |
| |
79. Prestori F., Rossi P., Bearzatto B. et al. Altered neuron excitability and synaptic plasticity in the cerebellar granular layer of juvenile prion protein knock-out mice with impaired motor control. J. Neurosci, 2008; 28: 7091-7103. | |
| |
80. Prusiner S.B. Novel proteinaceous infectious particles cause scrapie. Science, 1982; 216: 136-144. | |
| |
81. Prusiner S.B. Prions. Proc. Natl. Acad. Sci. USA,1998; 95: 13363-13383. | |
| |
82. Ramljak S., Asif A.R., Armstrong V.W. et al. Physiological role of the cellular prion protein (PrPc): protein profiling study in two cell culture systems. J. Proteome Res, 2008; 7: 2681-2695. | |
| |
83. Ramsey IS, Delling M, Clapham DE. An introduction to TRP channels. Annual Reviews of Physiology, 2006; 68:619-647. | |
| |
84. Rangel A., Burgaya F., Gavın R. et al. Enhanced susceptibility of Prnp-deficient mice to kainateinduced seizures, neuronal apoptosis, and death: role of AMPA/kainate receptors. J. Neurosci. Res, 2007; 85: 2741-2755. | |
| |
85. Riemenschneider M., Klopp N., Xiang W. et al. Prion protein codon 129 polymorphism and risk of Alzheimer disease. Neurology, 2004; 27: 364-366. | |
| |
86. Sah P., Davies P. Calcium-activated potassium currents in mammalian neurons. Clin. Exp. Pharmacol. Physiol, 2000; 27: 657-663. | |
| |
87. Sandberg M.K., Wallen P., Wikstrom, M.A., Kristensson K. Scrapie-infected GT1-1 cells show impaired function of voltagegated N-type calcium channels (Ca(v) 2.2) which is ameliorated by quinacrine treatment. Neurobiol. Dis, 2004; 15: 143-151. | |
| |
88. Shankar G.M., Li S., Mehta T.H. et al. Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat. Med, 2008; 14: 837-842. | |
| |
89. Sorgato M.C., Bertoli A. From cell protection to death: May Ca2+-signals explain the chameleonic attributes of the mammalian prion protein? Biochemical and Biophysical Research Communications, 2009; 379: 171-174. | |
| |
90. Sorgato M.C., Peggion C., Bertoli A. Is, indeed, the prion protein a Harlequin servant of ''many'' masters? Prion, 2009; 3: 202-205. | |
| |
91. Spudich A., Frigg R., Kilic E. et al. Aggravation of ischemic brain injury by prion protein deficiency: role of ERK-1/-2 and STAT-1. Neurobiol. Dis, 2005; 20: 442-449. | |
| |
92. Starkov A.A., Beal F.M. Portal to Alzheimer's disease. Nature Medicine, 2008; 14: 1008-1021. | |
| |
93. Steele A.D., Lindquist S., Aguzzi A. The prion protein knockout mouse: a phenotype under challenge. Prion, 2007; 1: 83-93. | |
| |
94. Stella R., Massimino M.L., Sandri M. et al. Cellular prion protein promotes regeneration of adult muscle tissue. Mol. Cell. Biol, 2010; 30: 4864-4876. | |
| |
95. Thellung S., Florio T., Corsaro A. et al. Intracellular mechanisms mediating the neuronal death and astrogliosis induced by the prion protein fragment 106-126. Int. J. Dev. Neurosci, 2000; 18: 481-492. | |
| |
96. Thellung S., Florio T., Villa V. et al. Apoptotic cell death and impairment of L-type voltage-sensitive calcium channel activity in rat cerebellar granule cells treated with the prion protein fragment 106-126. Neurobiol. Dis, 2000; 7: 299-309. | |
| |
97. Torres M., Castillo K., Armisen R. et al. Prion protein misfolding affects calcium homeostasis and sensitizes cells to endoplasmic reticulum stress. PLoS One, 2010; 5: 15658. | |
| |
98. Voigtlander T., Kloppel S., Birner P. et al. Marked increase of neuronal prion protein immunoreactivity in Alzheimer's disease and human prion diseases. Acta Neuropathol, 2001; 101: 417-423. | |
| |
99. Walsh D.M., Klyubin I., Fadeeva J.V. et al. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal longterm potentiation in vivo. Nature, 2002; 4: 535-539. | |
| |
100. Walsh D.M., Selkoe D.J. Abeta oligomers - a decade of discovery. J. Neurochem, 2007; 101: 1172-1184. | |
| |
101. Walz R., Amaral O.B., Rockenbach I.C. et al. Increased sensitivity to seizures in mice lacking cellular prion protein. Epilepsia, 1999; 40: 1679-1682. | |
| |
102. Wang H.W., Pasternak J.F., Kuo H. et al. Soluble oligomers of beta amyloid (1-42) inhibit long-term potentiation but not long-term depression in rat dentate gyrus. Brain Res, 2002; 11: 133-140. | |
| |
103. Weise J., Sandau R., Schwarting S. et al. Deletion of cellular prion protein results in reduced Akt activation, enhanced postischemic caspase-3 activation, and exacerbation of ischemic brain injury. Stroke, 2006; 37: 1296-1300. | |
| |
104. Weiss E., Ramljak S., Asif A.R. et al. Cellular prion protein overexpression disturbs cellular homeostasis in SH-SY5Y neuroblastoma cells but does not alter p53 expression: a proteomic study. Neuroscience, 2010; 169: 1640-1650. | |
| |
105. Westergard L., Christensen H., Harris D. The cellular prion protein (PrPC): its physiological function and role in disease. Biochim. Biophys. Acta, 2007; 1772: 629-644 . | |
| |
106. Whittington M.A., Sidle K.C., Gowland I. et al. Rescue of neurophysiological phenotype seen in PrP null mice by transgene encoding human prion protein. Nat. Genet, 1995; 9: 197-201. | |
| |
107. Wong K., Qiu Y., Hyun W. et al. Decreased receptor-mediated calcium response in prion-infected cells correlates with decreased membrane fluidity and IP3 release. Neurology, 1996; 47: 741-750. | |
| |
108. Wuthrich K., Riek R. Three-dimensional structures of prion proteins. Adv. Protein Chem, 2001; 57: 55-82. | |
| |
109. Yuan J., Xiao X., Mc Geehan J. et al. Insoluble aggregates and protease-re sistant conformer of prion protein in uninfected human brain. J. Biol. Chem, 2006; 281: 34848-34858. | |
| |
110. Zamponi G.W., Stys P.K. Role of prions in neuroprotection and neurodegeneration: a mechanism involving glutamate receptors? Prion, 2009; 3: 187-189. | |
| |
111. Zanata S.M., Lopes M.H., Mercadante A.F. et al. Stress-inducible protein 1 is a cell surface ligand for cellular prion that triggers neuroprotection. EMBO J, 2002; 21: 3307-3316. | |
| |
112. Zhang C.C., Steele A. D., Lindquist S., Lodish H.F. Prion protein is expressed on long-term repopulating hematopoietic stem cells and is important for their self-renewal. Proc. Natl. Acad. Sci. USA, 2006; 103: 2184-2189. | |
| |
113. Zheng H., Koo E.H. The amyloid precursor protein: beyond amyloid. Mol. Neurodegener, 2006; 3: 1-5. | |
| |
114. Zou W.Q., Gambetti P. Prion: the chameleon protein. Cell. Mol. Life Sci, 2007; 64 3266-3270. | |
| |
Refbacks
- There are currently no refbacks.
Copyright (c) 2013 Studia biologica
This work is licensed under a Creative Commons Attribution 4.0 International License.