LACTIC ACID AS A SYSTEMIC PRODUCT AND BIOMARKER OF PHYSICAL LOAD

Yu. R. Boretsky, I. Z. Hlozhyk, V. R. Hashchyshyn, R. I. Tymochko-Voloshyn, N. M. Paraniak, Kh. E. Shavel, M. V. Stefanyshyn, I. V. Verbin, V. A. Ivashchenko, G. Z. Gayda, M. V. Gonchar


DOI: http://dx.doi.org/10.30970/sbi.1701.703

Abstract


This paper presents an up-to-date review of research data on the specific features of lactic acid metabolism and its role as an effector of vital regulatory mechanisms. Lactic acid is an alpha-hydroxy monocarboxylic acid. Physical loads of submaximal intensity and some diseases can cause dramatic increase of lactic acid content in the body fluids. The excessive lactate is removed from the working muscle and either metabolized by other tissues or excreted from the human body. Alteration of the lactate-pyruvate balance is one of the main markers of the development of cardiac hypertrophy and failure. The redistribution of lactate between the cells producing it and the cells that metabolize it is vital to maintain a stable pH level in tissues and hold lactate in the body since this compound is an important energy source as well as an effector of important regulatory mechanisms. The quantification of lactate is used to assess general physical capabilities of the human body, the intensity of physical load and the rate of recovery in physical rehabilitation.
Specialized proteins, which refer to the group of monocarboxylate transporters, are involved in lactate excretion and absorption by cells. The presence of various types of transporters in cell membranes that differ in affinity to lactate and the direction of transport ensures a rapid redistribution of lactic acid throughout the body and regulates the intensity and direction of its metabolism according to the physiological needs.
Efficient transfer and redistribution of lactate between different tissues of the body is essential, given the participation of lactate in several important regulatory mechanisms.
As an effector, lactate is involved in the regulation of angiogenesis, differentiation of myosatellitocytes, regeneration of muscle fibers, polarization of macrophages and the course of inflammatory processes. Besides, lactate participates in epigenetic mechanisms of muscle tissue metabolism regulation. Therefore, lactate is one of the key metabolites in the human body.


Keywords


lactate, skeletal muscles, lactate transport, monocarboxylate transporters, metabolism regulation

References


Bendahan, D., Chatel, B., & Jue, T. (2017). Comparative NMR and NIRS analysis of oxygen-dependent metabolism in exercising finger flexor muscles. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 313(6), R740-R753. doi:10.1152/ajpregu.00203.2017
CrossrefPubMedPMCGoogle Scholar

Bergersen, L. H. (2015). Lactate transport and signaling in the brain: potential therapeutic targets and roles in body-brain Interaction. Journal of Cerebral Blood Flow & Metabolism, 35(2), 176-185. doi:10.1038/jcbfm.2014.206
CrossrefPubMedPMCGoogle Scholar

Bisetto, S., Wright, M. C., Nowak, R. A., Lepore, A. C., Khurana, T. S., Loro, E., & Philp, N. J. (2019). New insights into the lactate shuttle: role of MCT4 in the modulation of the exercise capacity. iScience, 22, 507-518. doi:10.1016/j.isci.2019.11.041
CrossrefPubMedPMCGoogle Scholar

Bonen, A., Heynen, M., & Hatta, H. (2006). Distribution of monocarboxylate transporters MCT1-MCT8 in rat tissues and human skeletal muscle. Applied Physiology, Nutrition, and Metabolism, 31(1), 31-39. doi:10.1139/h05-002
CrossrefPubMedGoogle Scholar

Bosshart, P. D., Charles, R.-P., Garibsingh, R.-A. A., Schlessinger, A., & Fotiadis, D. (2021). SLC16 family: from atomic structure to human disease. Trends in Biochemical Sciences, 46(1), 28-40. doi:10.1016/j.tibs.2020.07.005
CrossrefPubMedGoogle Scholar

Bricker, D. K., Taylor, E. B., Schell, J. C., Orsak, T., Boutron, A., Chen, Y.-C., Cox, J. E., Cardon, C. M., Van Vranken, J. G., Dephoure, N., Redin, C., Boudina, S., Gygi, S. P., Brivet, M., Thummel, C. S., & Rutter, J. (2012). A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science, 337(6090), 96-100. doi:10.1126/science.1218099
CrossrefPubMedPMCGoogle Scholar

Brooks, G. A. (2020). Lactate as a fulcrum of metabolism. Redox Biology, 35, 101454. doi:10.1016/j.redox.2020.101454
CrossrefPubMedPMCGoogle Scholar

Cluntun, A. A., Badolia, R., Lettlova, S., Parnell, K. M., Shankar, T. S., Diakos, N. A., … & Drakos, S. G. (2021). The pyruvate-lactate axis modulates cardiac hypertrophy and heart failure. Cell Metabolism, 33(3), 629-648.e10. doi:10.1016/j.cmet.2020.12.003
CrossrefPubMedPMCGoogle Scholar

Costa Leite, T., Da Silva, D., Guimarães Coelho, R., Zancan, P., & Sola-Penna, M. (2007). Lactate favours the dissociation of skeletal muscle 6-phosphofructo-1-kinase tetramers down-regulating the enzyme and muscle glycolysis. Biochemical Journal, 408(1), 123-130. doi:10.1042/bj20070687
CrossrefPubMedPMCGoogle Scholar

Dimmer, K. S., Friedrich, B., Lang, F., Deitmer, J. W., & Bröer, S. (2000). The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells. Biochemical Journal, 350(1), 219-227. doi:10.1042/bj3500219
CrossrefPubMedPMCGoogle Scholar

Divakaruni, A. S., & Murphy, A. N. (2012). A mitochondrial mystery, solved. Science, 337(6090), 41-43. doi:10.1126/science.1225601
CrossrefPubMedGoogle Scholar

Fedotovskaya, O. N., Mustafina, L. J., Popov, D. V., Vinogradova, O. L., & Ahmetov, I. I. (2014). A common polymorphism of the MCT1 gene and athletic performance. International Journal of Sports Physiology and Performance, 9(1), 173-180. doi:10.1123/ijspp.2013-0026
CrossrefPubMedGoogle Scholar

Felmlee, M. A., Jones, R. S., Rodriguez-Cruz, V., Follman, K. E., & Morris, M. E. (2020). Monocarboxylate transporters (SLC16): function, regulation, and role in health and disease. Pharmacological Reviews, 72(2), 466-485. doi:10.1124/pr.119.018762
CrossrefPubMedPMCGoogle Scholar

Fernández-Ruiz, I. (2021). Rebalancing the pyruvate-lactate axis to treat heart failure. Nature Reviews Cardiology, 18(3), 150-151. doi:10.1038/s41569-021-00513-8
CrossrefGoogle Scholar

Fishbein, W. N., Merezhinskaya, N., & Foellmer, J. W. (2002). Relative distribution of three major lactate transporters in frozen human tissues and their localization in unfixed skeletal muscle. Muscle & Nerve, 26(1), 101-112. doi:10.1002/mus.10168
CrossrefPubMedGoogle Scholar

Flores, A., Schell, J., Krall, A. S., Jelinek, D., Miranda, M., Grigorian, M., Braas, D., White, A. C., Zhou, J. L., Graham, N. A., Graeber, T., Seth, P., Evseenko, D., Coller, H. A., Rutter, J., Christofk, H. R., & Lowry, W. E. (2017). Lactate dehydrogenase activity drives hair follicle stem cell activation. Nature Cell Biology, 19(9), 1017-1026. doi:10.1038/ncb3575
CrossrefPubMedPMCGoogle Scholar

Franco-Martínez, L., Tvarijonaviciute, A., Martínez-Subiela, S., Márquez, G., Martínez Díaz, N., Cugat, R., Cerón, J. J., & Jiménez-Reyes, P. (2019). Changes in lactate, ferritin, and uric acid in saliva after repeated explosive effort sequences. The Journal of Sports Medicine and Physical Fitness, 59(6). doi:10.23736/s0022-4707.18.08792-3
CrossrefPubMedGoogle Scholar

Gladden, L. B. (2004). Lactate metabolism: a new paradigm for the third millennium. The Journal of Physiology, 558(1), 5-30. doi:10.1113/jphysiol.2003.058701
CrossrefPubMedPMCGoogle Scholar

Gray, L. R., Sultana, M. R., Rauckhorst, A. J., Oonthonpan, L., Tompkins, S. C., Sharma, A., ... & Taylor, E. B. (2015). Hepatic mitochondrial pyruvate carrier 1 is required for efficient regulation of gluconeogenesis and whole-body glucose homeostasis. Cell Metabolism, 22(4), 669-681. doi:10.1016/j.cmet.2015.07.027
CrossrefPubMedPMCGoogle Scholar

Haas, S. A., Lange, T., Saugel, B., Petzoldt, M., Fuhrmann, V., Metschke, M., & Kluge, S. (2015). Severe hyperlactatemia, lactate clearance and mortality in unselected critically ill patients. Intensive Care Medicine, 42(2), 202-210. doi:10.1007/s00134-015-4127-0
CrossrefPubMedGoogle Scholar

Halestrap, A. P. (2011). The monocarboxylate transporter family - structure and functional characterization. IUBMB Life, 64(1), 1-9. doi:10.1002/iub.573
CrossrefPubMedGoogle Scholar

Halestrap, A. P. (2013). Monocarboxylic acid transport. Comprehensive Physiology, 3(4), 1611-1643. doi:10.1002/cphy.c130008
CrossrefPubMedGoogle Scholar

Halestrap, A. P., & Wilson, M. C. (2011). The monocarboxylate transporter family - role and regulation. IUBMB Life, 64(2), 109-119. doi:10.1002/iub.572
CrossrefPubMedGoogle Scholar

Hargreaves, M., & Spriet, L. L. (2020). Skeletal muscle energy metabolism during exercise. Nature Metabolism, 2(9), 817-828. doi:10.1038/s42255-020-0251-4
CrossrefPubMedGoogle Scholar

Hashchyshyn, V., Tymochko-Voloshyn, R., Paraniak, N., Vovkanych, L., Hlozhyk, I., Trach, V., Muzyka, F., Serafyn, Y., Prystupa, E., & Boretsky, Y. (2022). Regeneration of skeletal muscle fibers and regulation of myosatellitocytes metabolism. Cytology and Genetics, 56(3), 253-260. doi:10.3103/s0095452722030033
CrossrefGoogle Scholar

Hertz, L., & Dienel, G. A. (2004). Lactate transport and transporters: general principles and functional roles in brain cells. Journal of Neuroscience Research, 79(1-2), 11-18. doi:10.1002/jnr.20294
CrossrefPubMedGoogle Scholar

Iacono, K. T., Brown, A. L., Greene, M. I., & Saouaf, S. J. (2007). CD147 immunoglobulin superfamily receptor function and role in pathology. Experimental and Molecular Pathology, 83(3), 283-295. doi:10.1016/j.yexmp.2007.08.014
CrossrefPubMedPMCGoogle Scholar

Kang, K. P., Lee, S., & Kang, S. K. (2006). D-lactic acidosis in humans: review of update. Electrolyte & Blood Pressure, 4(1), 53-56. doi:10.5049/ebp.2006.4.1.53
CrossrefPubMedPMCGoogle Scholar

Kirk, P., Wilson, M. C., Heddle, C., Brown, M. H., Barclay, A. N., & Halestrap, A. P. (2000). CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression. The EMBO Journal, 19(15), 3896-3904. doi:10.1093/emboj/19.15.3896
CrossrefPubMedPMCGoogle Scholar

Levy, B. (2006). Lactate and shock state: the metabolic view. Current Opinion in Critical Care, 12(4), 315-321. doi:10.1097/01.ccx.0000235208.77450.15
CrossrefPubMedGoogle Scholar

Li, X., Yang, Y., Zhang, B., Lin, X., Fu, X., An, Y., Zou, Y., Wang, J.-X., Wang, Z., & Yu, T. (2022). Lactate metabolism in human health and disease. Signal Transduction and Targeted Therapy, 7(1), 305. doi:10.1038/s41392-022-01151-3
CrossrefPubMedPMCGoogle Scholar

Manning Fox, J. E., Meredith, D., & Halestrap, A. P. (2000). Characterisation of human monocarboxylate transporter 4 substantiates its role in lactic acid efflux from skeletal muscle. The Journal of Physiology, 529(2), 285-293. doi:10.1111/j.1469-7793.2000.00285.x
CrossrefPubMedPMCGoogle Scholar

Martín, A., Kim, J., Kurniawan, J. F., Sempionatto, J. R., Moreto, J. R., Tang, G., Campbell, A. S., Shin, A., Lee, M. Y., Liu, X., & Wang, J. (2017). Epidermal microfluidic electrochemical detection system: enhanced sweat sampling and metabolite detection. ACS Sensors, 2(12), 1860-1868. doi:10.1021/acssensors.7b00729
CrossrefPubMedGoogle Scholar

Matsui, T., Omuro, H., Liu, Y.-F., Soya, M., Shima, T., McEwen, B. S., & Soya, H. (2017). Astrocytic glycogen-derived lactate fuels the brain during exhaustive exercise to maintain endurance capacity. Proceedings of the National Academy of Sciences, 114(24), 6358-6363. doi:10.1073/pnas.1702739114
CrossrefPubMedPMCGoogle Scholar

McCommis, K. S., & Finck, B. N. (2015). Mitochondrial pyruvate transport: a historical perspective and future research directions. Biochemical Journal, 466(3), 443-454. doi:10.1042/bj20141171
CrossrefPubMedPMCGoogle Scholar

Merezhinskaya, N., Fishbein, W. N., Davis, J. I., & Foellmer, J. W. (2000). Mutations in MCT1 cDNA in patients with symptomatic deficiency in lactate transport. Muscle & Nerve, 23(1), 90-97. doi:10.1002/(SICI)1097-4598(200001)23:1<90::AID-MUS12>3.0.CO;2-M
CrossrefPubMedGoogle Scholar

Merezhinskaya, N., & Fishbein, W. N. (2009). Monocarboxylate transporters: past, present, and future. Histology and Histopathology, 24(2), 243-264. doi:10.14670/HH-24.243
CrossrefPubMedGoogle Scholar

Mintun, M. A., Vlassenko, A. G., Rundle, M. M., & Raichle, M. E. (2004). Increased lactate/pyruvate ratio augments blood flow in physiologically activated human brain. Proceedings of the National Academy of Sciences, 101(2), 659-664. doi:10.1073/pnas.0307457100
CrossrefPubMedPMCGoogle Scholar

Nagampalli, R. S. K., Quesñay, J. E. N., Adamoski, D., Islam, Z., Birch, J., Sebinelli, H. G., ... & Ambrosio, A. L. B. (2018). Human mitochondrial pyruvate carrier 2 as an autonomous membrane transporter. Scientific Reports, 8(1). doi:10.1038/s41598-018-21740-z
CrossrefPubMedPMCGoogle Scholar

Nalbandian, M., Radak, Z., & Takeda, M. (2019). N-acetyl-L-cysteine prevents lactate-mediated PGC1-alpha expression in C2C12 myotubes. Biology, 8(2), 44. doi:10.3390/biology8020044
CrossrefPubMedPMCGoogle Scholar

Noor, S. I., Jamali, S., Ames, S., Langer, S., Deitmer, J. W., & Becker, H. M. (2018). A surface proton antenna in carbonic anhydrase II supports lactate transport in cancer cells. eLife, 7, e35176. doi:10.7554/elife.35176
CrossrefPubMedPMCGoogle Scholar

Okano, S., Nishizawa, H., Yui, J., & Nakamura, A. (2022). Impact of body fat, body water content, and skeletal muscle mass index on peak salivary lactate levels after squat jump exercise in healthy non-athlete adult males. BMC Sports Science, Medicine and Rehabilitation, 14(1), 91. doi:10.1186/s13102-022-00482-6
CrossrefPubMedPMCGoogle Scholar

Okorie, O. N., & Dellinger, P. (2011). Lactate: biomarker and potential therapeutic target. Critical Care Clinics, 27(2), 299-326. doi:10.1016/j.ccc.2010.12.013
CrossrefPubMedGoogle Scholar

Payen, V. L., Mina, E., Van Hée, V. F., Porporato, P. E., & Sonveaux, P. (2020). Monocarboxylate transporters in cancer. Molecular Metabolism, 33, 48-66. doi:10.1016/j.molmet.2019.07.006
CrossrefPubMedPMCGoogle Scholar

Poole, R. C., & Halestrap, A. P. (1994). N-terminal protein sequence analysis of the rabbit erythrocyte lactate transporter suggests identity with the cloned monocarboxylate transport protein MCT1. Biochemical Journal, 303(3), 755-759. doi:10.1042/bj3030755
CrossrefPubMedPMCGoogle Scholar

Poole, R. C., Sansom, C. E., & Halestrap, A. P. (1996). Studies of the membrane topology of the rat erythrocyte H+/lactate cotransporter (MCT1). Biochemical Journal, 320(3), 817-824. doi:10.1042/bj3200817
CrossrefPubMedPMCGoogle Scholar

Quesñay, J. E. N., Pollock, N. L., Nagampalli, R. S. K., Lee, S. C., Balakrishnan, V., Dias, S. M. G., Moraes, I., Dafforn, T. R., & Ambrosio, A. L. B. (2020). Insights on the quest for the structure-function relationship of the mitochondrial pyruvate carrier. Biology, 9(11), 407. doi:10.3390/biology9110407
CrossrefPubMedPMCGoogle Scholar

Ramírez de la Piscina-Viúdez, X., Álvarez-Herms, J., Bonilla, D. A., Castañeda-Babarro, A., Larruskain, J., Díaz-Ramírez, J., Ahmetov, I. I., Martínez-Ascensión, A., Kreider, R. B., & Odriozola-Martínez, A. (2021). Putative role of MCT1 rs1049434 polymorphism in high-intensity endurance performance: concept and basis to understand possible individualization stimulus. Sports, 9(10), 143. doi:10.3390/sports9100143
CrossrefPubMedPMCGoogle Scholar

Ren, T., Jones, R. S., & Morris, M. E. (2022). Untargeted metabolomics identifies the potential role of monocarboxylate transporter 6 (MCT6/SLC16A5) in lipid and amino acid metabolism pathways. Pharmacology Research & Perspectives, 10(3), e00944. doi:10.1002/prp2.944
CrossrefPubMedPMCGoogle Scholar

Sheeran, F. L., Angerosa, J., Liaw, N. Y., Cheung, M. M., & Pepe, S. (2019). Adaptations in protein expression and regulated activity of pyruvate dehydrogenase multienzyme complex in human systolic heart failure. Oxidative Medicine and Cellular Longevity, 2019, 1-11. doi:10.1155/2019/4532592
CrossrefPubMedPMCGoogle Scholar

Smutok, O., Gayda, G., Gonchar, M., & Schuhmann, W. (2005). A novel L-lactate-selective biosensor based on flavocytochrome b2 from methylotrophic yeast Hansenula polymorpha. Biosensors and Bioelectronics, 20(7), 1285-1290. doi:10.1016/j.bios.2004.04.020
CrossrefPubMedGoogle Scholar

Takahashi, S. (2022). Metabolic contribution and cerebral blood flow regulation by astrocytes in the neurovascular unit. Cells, 11(5), 813. doi:10.3390/cells11050813
CrossrefPubMedPMCGoogle Scholar

Wang, L., Xu, M., Qin, J., Lin, S.-C., Lee, H.-J., Tsai, S. Y., & Tsai, M.-J. (2016). MPC1, a key gene in cancer metabolism, is regulated by COUPTFII in human prostate cancer. Oncotarget, 7(12), 14673-14683. doi:10.18632/oncotarget.7405
CrossrefPubMedPMCGoogle Scholar

Wang, N., Jiang, X., Zhang, S., Zhu, A., Yuan, Y., Xu, H., Lei, J., & Yan, C. (2021). Structural basis of human monocarboxylate transporter 1 inhibition by anti-cancer drug candidates. Cell, 184(2), 370-383.e13. doi:10.1016/j.cell.2020.11.043
CrossrefPubMedGoogle Scholar

Wilson, M. C., Meredith, D., Fox, J. E. M., Manoharan, C., Davies, A. J., & Halestrap, A. P. (2005). Basigin (CD147) is the target for organomercurial inhibition of monocarboxylate transporter isoforms 1 and 4: the ancillary protein for the insensitive MCT2 is embigin (gp70). Journal of Biological Chemistry, 280(29), 27213-27221. doi:10.1074/jbc.m411950200
CrossrefPubMedGoogle Scholar

Zhang, J., Muri, J., Fitzgerald, G., Gorski, T., Gianni-Barrera, R., Masschelein, E., ... & De Bock, K. (2020). Endothelial lactate controls muscle regeneration from ischemia by inducing M2-like macrophage polarization. Cell Metabolism, 31(6), 1136-1153.e7. doi:10.1016/j.cmet.2020.05.004
CrossrefPubMedPMCGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Yu. R. Boretsky, I. Z. Hlozhyk, V. R. Hashchyshyn, R. I. Tymochko-Voloshyn, N. M. Paraniak, K. E. Shavel, M. V. Stefanyshyn, I. V. Verbin, V. F. Ivashchenko, G. Z. Gayda, M. V. Gonchar

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.