THERMOMECHANOKINETICS OF VISCOELASTIC DEFORMATION OF SMOOTH MUSCLES IN RAT GASTROITESTINAL TRACT. III. THE WORK OF THE VISCOELASTIC STRETCH OF ANTRAL STOMACH SMOOTH MUSCLES

O. V. Tsymbalyuk, S. O. Kosterin


DOI: http://dx.doi.org/10.30970/sbi.0701.256

Abstract


The walls of the stomach are adapted to function under variable pressure and temperature, thus, analysis of thermomechanokinetical properties of its smooth muscles deserves special attention. In this paper, changes of work on visсoelastic deformation of smooth muscle rat antrum under differing temperatures of physiologically reasonable range (22–48°C) were studied. At deformation of smooth muscle, greatest work is performed within the physiologically relevant temperatures (28–37°С), reaching a maximum value at the moderate cooling (28–31°С). In the left (22–25°C) and right (40–48°С) parts of the temperature ranges of application of similar magnitude of the deforming force f leads to the implementation of the system relatively less (40%) work. The characteristic value indicating system sensitivity to cold and heat, is a half-maximal work ∆A1/2 (the work that must be performed to cause semimaximal stretch of smooth muscle strip). The maximum value of the ∆A1/2are observed in the temperature range 28–31°C, decreasing at a deviation to the right and the left. Thus, the most effective (relative of conducting the work) is a function of muscular system in the temperature range from small cooling to normal temperature (28–37°C).


Keywords


smooth muscle, stomach, thermomechanokinetics, work of viscoelastic deformation, half-maximal work

References


1. Цимбалюк О.В., Костерін С.О. термомеханокінетика високоеластичної деформації гладеньких м’язів шлунково-кишкового тракту щура. I. Динамічні закономірності розтягування гладеньких м’язів шлунка. Біологічні Студії / Studia Biologica, 2012; 6(2): 87–98.
https://doi.org/10.30970/sbi.0602.213

2. Цимбалюк О.В., Костерін С.О. термомеханокінетика високоеластичої деформації гладеньких м’язів шлунково-кишкового тракту щура. II. Явище гістерезису у випадку розтягування гладеньких м’язів шлунка та товстого кишечнику. Біологічні Студії / Studia Biologica, 2012; 6(3): 73–84.
https://doi.org/10.30970/sbi.0603.214

3. Цимбалюк О.В., Костерін С.О. Застосування рівняння Віганда-Снайдера до термодинамічної інтерпретації високоеластичної деформації гладеньких м’язів шлунка. Доповіді НАН України (у друці).

4. Apter J.T. Correlation of visco-elastic properties with microscopic structure of large arteries: IV thermal responses of collagen, elastin, smooth muscle, and intact artesries. Circ. Res, 1967; 21: 901-918.
https://doi.org/10.1161/01.RES.21.6.901
PMid:6078150

5. Bautista D.M., Siemens J., Glazer J.M. et al. The menthol receptor TRPM8 is the principal detector of environmental cold. Nature, 2007; 448: 204-209.
https://doi.org/10.1038/nature05910
PMid:17538622

6. Bennett A.F. Thermal dependence of muscle function. Am. J. Physiol, 1984; 247: R217-R229.
https://doi.org/10.1152/ajpregu.1984.247.2.R217
PMid:6380314

7. Boesmans W., Owsianik G., Tack J. et al. TRP channels in neurogastroenterology: opportunities fortherapeutic intervention. Br. J. Pharm, 2011; 162: 18-37.
https://doi.org/10.1111/j.1476-5381.2010.01009.x
PMid:20804496 PMCid:PMC3012403

8. Burdyga T.V., Wray S. On the mechanisms whereby temperature affects excitation-contraction coupling in smooth muscle. J. Gen. Physiol, 2002; 119: 93-104.
https://doi.org/10.1085/jgp.119.1.93
PMid:11773241 PMCid:PMC2233859

9. Chaterji S., Kwon K., Park K. Smart polymeric gels: Redefining the limits of biomedical devices. Prog. Polym. Sci, 2007; 32: 1083-1122.
https://doi.org/10.1016/j.progpolymsci.2007.05.018
PMid:18670584 PMCid:PMC2084382

10. Fuchs J.R., Nasseri B.A., Vacanti J.P. Tissue engineering: a 21st century solution to surgical reconstruction. Ann. Thorac. Surg, 2001; 72: 577-591.
https://doi.org/10.1016/S0003-4975(01)02820-X

11. Gregersen H., Kassab G. Biomechanics of the gastrointestinal tract. Neurogastroenterol. Mot, 1996; 8: 277-297.
https://doi.org/10.1111/j.1365-2982.1996.tb00267.x

12. Herrera B., Desco M.M., Eisenberg G. et al. Role of elastic fibers in cooling-induced relaxation. Cryobiology, 2002; 44: 54-61.
https://doi.org/10.1016/S0011-2240(02)00004-4

13. Holzer P. Transient receptor potential (TRP) channels as drug targets for diseases of the digestive system. Pharm. & Therap, 2011; 131: 142-170.
https://doi.org/10.1016/j.pharmthera.2011.03.006
PMid:21420431 PMCid:PMC3107431

14. Holzer P. TRP channels in the digestive system. Curr. Pharm. Biotechnol, 2011; 12(1): 24-34.
https://doi.org/10.2174/138920111793937862
PMid:20932260 PMCid:PMC3160477

15. Koerner H., Price G., Pearce N.A. et al. Remotely actuated polymer nanocomposites - stress-recovery of carbon-nanotube-filled thermoplastic elastomers. nature (materials), 2004; 3: 115-120.
https://doi.org/10.1038/nmat1059
PMid:14743213

16. Lecarpentier Y., Claes V., Lecarpentier E. et al. Comparative statistical mechanics of myosin molecular motors in rat heart, diaphragm and tracheal smooth muscle. Comptes Rendus Biologies, 2011; 334: 725-736.
https://doi.org/10.1016/j.crvi.2011.08.001
PMid:21943522

17. Mishima Y., Amano Y., Takahashi Y. et al. Gastric emptying of liquid and solid meals at various temperatures. Effect of meal temperature for gastric emptying. J. Gastroenterol, 2009; 44: 412-418.
https://doi.org/10.1007/s00535-009-0022-1
PMid:19308311

18. Mustafa S., Oriowo M. Cooling-induced contraction of the rat gastric fundus: mediation via transient receptor potential (TRP) cation channel TRPM8 receptor and Rho-kinase activation. Clin. Exp. Pharmacol. Physiol, 2005; 32(10): 832-838.
https://doi.org/10.1111/j.1440-1681.2005.04273.x
PMid:16173944

19. Nagapudi K., Brinkmana W.T., Thomasa B.S. Viscoelastic and mechanical behavior of recombinant protein elastomers. Biomaterials, 2005; 26 (23):4695-4706.
https://doi.org/10.1016/j.biomaterials.2004.11.027
PMid:15763249

20. Nakase Y., Hagiwara A., Nakamura T. Tissue engineering of small intestinal tissue using collagen sponge scaffolds seeded with smooth muscle cells. Tissue Eng, 2006; 12: 403-412.
https://doi.org/10.1089/ten.2006.12.403
PMid:16548698

21. Small IV W., Singhal P., Wilson T.S. et al. Biomedical applications of thermally activated shape memory polymers. J. Mater. Chem, 2010; 20(18): 3356-3366.
https://doi.org/10.1039/b923717h
PMid:21258605 PMCid:PMC3023912

22. Solan A., Dahl S.L.M., Niklason L.E. Effects of mechanical stretch on collagen and cross-linking in engineered blood vessels, Cell Transplant, 2009; 18(8): 915-921.
https://doi.org/10.3727/096368909X471161
PMid:19500474 PMCid:PMC2838167

23. Sun W.M., Houghton L.A., Read N.W. et al. Effect of meal temperature on gastric emptying of liquids in man. Gut, 1988; 29: 302-305.
https://doi.org/10.1136/gut.29.3.302
PMid:3356361 PMCid:PMC1433604

24. Sun W.M., Penagini R., Hebbard G. et al. Effect of drink temperature on antropyloduodenal motility and gastric electrical activity in humans. Gut, 1995; 37: 329-334.
https://doi.org/10.1136/gut.37.3.329
PMid:7590426 PMCid:PMC1382811

25. Talavera K., Nilius B., Voets T. Neuronal TRP channels: thermometers, pathfinders and life-savers. Trends in Neurosciences, 2008; 31(6): 287-295.
https://doi.org/10.1016/j.tins.2008.03.002
PMid:18471901

26. Villanova N., Azpiroz F., Malagelada J.-R. Perception and gut reflexes induced by stimulation of gastrointestinal thermoreceptors in humans. J. Phys, 1997; 502.1: 215-222.
https://doi.org/10.1111/j.1469-7793.1997.215bl.x
PMid:9234208 PMCid:PMC1159583

27. Voets T., Droogmans G., Wissenbach U. et al. The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature, 2004; 430: 748-754.
https://doi.org/10.1038/nature02732
PMid:15306801


Refbacks

  • There are currently no refbacks.


Copyright (c) 2013 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.