THERMOMECHANOKINETICS OF VISCOELASTIC DEFORMATION OF SMOOTH MUSCLES IN RAT GASTROITESTINAL TRACT. III. THE WORK OF THE VISCOELASTIC STRETCH OF ANTRAL STOMACH SMOOTH MUSCLES
DOI: http://dx.doi.org/10.30970/sbi.0701.256
Abstract
The walls of the stomach are adapted to function under variable pressure and temperature, thus, analysis of thermomechanokinetical properties of its smooth muscles deserves special attention. In this paper, changes of work on visсoelastic deformation of smooth muscle rat antrum under differing temperatures of physiologically reasonable range (22–48°C) were studied. At deformation of smooth muscle, greatest work is performed within the physiologically relevant temperatures (28–37°С), reaching a maximum value at the moderate cooling (28–31°С). In the left (22–25°C) and right (40–48°С) parts of the temperature ranges of application of similar magnitude of the deforming force f leads to the implementation of the system relatively less (40%) work. The characteristic value indicating system sensitivity to cold and heat, is a half-maximal work ∆A1/2 (the work that must be performed to cause semimaximal stretch of smooth muscle strip). The maximum value of the ∆A1/2are observed in the temperature range 28–31°C, decreasing at a deviation to the right and the left. Thus, the most effective (relative of conducting the work) is a function of muscular system in the temperature range from small cooling to normal temperature (28–37°C).
Keywords
Full Text:
PDF (Українська)References
1. Цимбалюк О.В., Костерін С.О. термомеханокінетика високоеластичної деформації гладеньких м’язів шлунково-кишкового тракту щура. I. Динамічні закономірності розтягування гладеньких м’язів шлунка. Біологічні Студії / Studia Biologica, 2012; 6(2): 87–98.
https://doi.org/10.30970/sbi.0602.213
2. Цимбалюк О.В., Костерін С.О. термомеханокінетика високоеластичої деформації гладеньких м’язів шлунково-кишкового тракту щура. II. Явище гістерезису у випадку розтягування гладеньких м’язів шлунка та товстого кишечнику. Біологічні Студії / Studia Biologica, 2012; 6(3): 73–84.
https://doi.org/10.30970/sbi.0603.214
3. Цимбалюк О.В., Костерін С.О. Застосування рівняння Віганда-Снайдера до термодинамічної інтерпретації високоеластичної деформації гладеньких м’язів шлунка. Доповіді НАН України (у друці).
4. Apter J.T. Correlation of visco-elastic properties with microscopic structure of large arteries: IV thermal responses of collagen, elastin, smooth muscle, and intact artesries. Circ. Res, 1967; 21: 901-918. | |
| |
5. Bautista D.M., Siemens J., Glazer J.M. et al. The menthol receptor TRPM8 is the principal detector of environmental cold. Nature, 2007; 448: 204-209. | |
| |
6. Bennett A.F. Thermal dependence of muscle function. Am. J. Physiol, 1984; 247: R217-R229. | |
| |
7. Boesmans W., Owsianik G., Tack J. et al. TRP channels in neurogastroenterology: opportunities fortherapeutic intervention. Br. J. Pharm, 2011; 162: 18-37. | |
| |
8. Burdyga T.V., Wray S. On the mechanisms whereby temperature affects excitation-contraction coupling in smooth muscle. J. Gen. Physiol, 2002; 119: 93-104. | |
| |
9. Chaterji S., Kwon K., Park K. Smart polymeric gels: Redefining the limits of biomedical devices. Prog. Polym. Sci, 2007; 32: 1083-1122. | |
| |
10. Fuchs J.R., Nasseri B.A., Vacanti J.P. Tissue engineering: a 21st century solution to surgical reconstruction. Ann. Thorac. Surg, 2001; 72: 577-591. | |
| |
11. Gregersen H., Kassab G. Biomechanics of the gastrointestinal tract. Neurogastroenterol. Mot, 1996; 8: 277-297. | |
| |
12. Herrera B., Desco M.M., Eisenberg G. et al. Role of elastic fibers in cooling-induced relaxation. Cryobiology, 2002; 44: 54-61. | |
| |
13. Holzer P. Transient receptor potential (TRP) channels as drug targets for diseases of the digestive system. Pharm. & Therap, 2011; 131: 142-170. | |
| |
14. Holzer P. TRP channels in the digestive system. Curr. Pharm. Biotechnol, 2011; 12(1): 24-34. | |
| |
15. Koerner H., Price G., Pearce N.A. et al. Remotely actuated polymer nanocomposites - stress-recovery of carbon-nanotube-filled thermoplastic elastomers. nature (materials), 2004; 3: 115-120. | |
| |
16. Lecarpentier Y., Claes V., Lecarpentier E. et al. Comparative statistical mechanics of myosin molecular motors in rat heart, diaphragm and tracheal smooth muscle. Comptes Rendus Biologies, 2011; 334: 725-736. | |
| |
17. Mishima Y., Amano Y., Takahashi Y. et al. Gastric emptying of liquid and solid meals at various temperatures. Effect of meal temperature for gastric emptying. J. Gastroenterol, 2009; 44: 412-418. | |
| |
18. Mustafa S., Oriowo M. Cooling-induced contraction of the rat gastric fundus: mediation via transient receptor potential (TRP) cation channel TRPM8 receptor and Rho-kinase activation. Clin. Exp. Pharmacol. Physiol, 2005; 32(10): 832-838. | |
| |
19. Nagapudi K., Brinkmana W.T., Thomasa B.S. Viscoelastic and mechanical behavior of recombinant protein elastomers. Biomaterials, 2005; 26 (23):4695-4706. | |
| |
20. Nakase Y., Hagiwara A., Nakamura T. Tissue engineering of small intestinal tissue using collagen sponge scaffolds seeded with smooth muscle cells. Tissue Eng, 2006; 12: 403-412. | |
| |
21. Small IV W., Singhal P., Wilson T.S. et al. Biomedical applications of thermally activated shape memory polymers. J. Mater. Chem, 2010; 20(18): 3356-3366. | |
| |
22. Solan A., Dahl S.L.M., Niklason L.E. Effects of mechanical stretch on collagen and cross-linking in engineered blood vessels, Cell Transplant, 2009; 18(8): 915-921. | |
| |
23. Sun W.M., Houghton L.A., Read N.W. et al. Effect of meal temperature on gastric emptying of liquids in man. Gut, 1988; 29: 302-305. | |
| |
24. Sun W.M., Penagini R., Hebbard G. et al. Effect of drink temperature on antropyloduodenal motility and gastric electrical activity in humans. Gut, 1995; 37: 329-334. | |
| |
25. Talavera K., Nilius B., Voets T. Neuronal TRP channels: thermometers, pathfinders and life-savers. Trends in Neurosciences, 2008; 31(6): 287-295. | |
| |
26. Villanova N., Azpiroz F., Malagelada J.-R. Perception and gut reflexes induced by stimulation of gastrointestinal thermoreceptors in humans. J. Phys, 1997; 502.1: 215-222. | |
| |
27. Voets T., Droogmans G., Wissenbach U. et al. The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature, 2004; 430: 748-754. |
Refbacks
- There are currently no refbacks.
Copyright (c) 2013 Studia biologica
This work is licensed under a Creative Commons Attribution 4.0 International License.