RAT BRAIN SEROTONIN SYNTHESIS UNDER PROLONGED CONSUMPTION OF FRUCTOSE SOLUTION

T. P. Karpovets, V. V. Konopelnyuk, O. M. Savchuk, L. I. Ostapchenko


DOI: http://dx.doi.org/10.30970/sbi.0803.390

Abstract


Key metabolites and enzymes of rat brain serotonin biosynthesis pathway under the development of obesity induced by the consumption of 10% fructose solution, have been studied. A reduction of tryptophan by 60±10 % (p < 0.05, n = 10), 5-hydroxytryptophan, a direct precursor of serotonin biosynthesis, and by 52±15 % (p < 0.05, n = 10) and serotonin by 45±18 % (p < 0.05, n = 10), respectively, has been found. A reduction in the activity of serotonin biosynthetic pathway key speed limiting enzyme –tryptophan hydroxylase by 30±2 % (p < 0.05, n = 10), and reduction of tryptophan decarboxylase activity by 58±10 % (p < 0.05, n = 10) in the brain of rats of experimental group has been found. The increase of monoamine oxidase activity in the rat brain after 10-week consumption of 10% fructose solution by 62±27 % (p < 0.05, n = 10) has been discovered. These results testify a violation of the biosynthesis of serotonin in the development of fructose-induced obesity, and indicate possible involvement of serotoninergic neurotransmitter system of brain in the development and progression of this multifactorial disease.


Keywords


serotonin, tryptophan, tryptophan hydroxylase, monoamine oxidase, obesity, fructose

References


1. Aasheim E.T., Hofsш D., Hjelmesaeth J. et al. Vitamin status in morbidly obese patients: a cross-sectional study. American Society for Clinical Nutrition, 2008; 87(2): 362-369.
https://doi.org/10.1093/ajcn/87.2.362
PMid:18258626

2. Ali B.H., Bartlet A.L. Inhibition of monoamine oxidase by furazolidone in the chicken and the influence of the alimentary flora thereon. British Journal of Pharmacology, 1980; 71(1): 219-224.
https://doi.org/10.1111/j.1476-5381.1980.tb10929.x
PMid:7470738

3. Belousov Y.B., Gurevich K.G. Hypertension and obesity: the principles of rational therapy. Consilium medicum, 2003; 5(9): 1-13

4. Bradford М.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry,1976; 72(7): 248-254.
https://doi.org/10.1006/abio.1976.9999
PMid:942051

5. Brunner H.G., Nelen M., Breakefield X.O. et al. Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science, 1993; 262(5133): 578-580.
https://doi.org/10.1126/science.8211186
PMid:8211186

6. Butrova S.А. Modern pharmacotherapy of obesity. Consilium Medicum, 2004; 6(9): 669-674. (In Russian)

7. Harnroongroj T., Jintaridhi P., Vudhivai N. et al. B vitamins, vitamin C and hematological measurements in overweight and obese Thais in Bangkok. Journal of the Medical Association of Thailand, 2002; 85(1): 17-25.

8. Johnson R.J., Perez-Pozo S.E., Sautin Y. et al. Hypothesis: Couid Excessive Fructose Intake and Uric Acid Cause Type 2 Diabetes? Endocrine Reviews, 2009; 30(1): 96-116.
https://doi.org/10.1210/er.2008-0033
PMid:19151107 PMCid:PMC2647706

9. Johnson R.J., Segal M.S., Sautin Y. et al. Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. American Journal of Clinical Nutrition, 2007; 86(4): 899-906.

10. Kalnia I.E., Bluma R.K. Fluorimetric determination of 5-hydroxytryptophan in the blood. Medicine, 1991; 1(1): 29-39. (In Russian)

11. Kang Y.M., Chen J.Y., Ouyang W. et al. Serotonin modulates hypothalamic neuronal activity. International Journal of Neuroscience, 2004; 114(3): 299-319.
https://doi.org/10.1080/00207450490264115
PMid:14754657

12. Kazumi T., Odaka H., Hozumi T. et al. Effects of dietary fructose or glucose on triglyceride production and lipogenic enzyme activities in the liver of Wistar fatty rats, an animal model of NIDDM. Endocrine Journal, 1997; 44(2): 239-245.
https://doi.org/10.1507/endocrj.44.239
PMid:9228459

13. Kuhn D.M., O'Callghan P., Juskevich J. et al. Activation of brain tryptophan hydroxylase by ATP-Mg2+: Dependence on calmodulin Proceedings of the National Academy of Sciences USA, 1980; 77(8): 4688-4691.
https://doi.org/10.1073/pnas.77.8.4688
PMid:6107909 PMCid:PMC349911

14. Le Floc'h N., Melchior D., Sеve B. J. Dietary tryptophan helps to preserve tryptophan homeostasis in pigs suffering from lung inflammation. Journal of Animal Science, 2008; 86(12): 3473-3479.
https://doi.org/10.2527/jas.2008-0999
PMid:18676721

15. Lewis G.F., Carpentier A., Adeli K. et al. Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocrine Review, 2002; 23(2): 201-229.
https://doi.org/10.1210/edrv.23.2.0461
PMid:11943743

16. Malik, V.S., Popkin, B.M., Bray, G.A. et al. Sugar-sweetened beverages, obesity, type 2 diabetes mellitus, and cardiovascular disease risk. Circulation, 2010; 121(11): 1356-1364.
https://doi.org/10.1161/CIRCULATIONAHA.109.876185
PMid:20308626 PMCid:PMC2862465

17. Maximenko Е.G., Savchenko V.N. The level of tryptophan and serotonin in terms of seizure activity in the brain. Journal of V. N. Karazin Kharkiv National University. Medicine, 2000; 494(1): 40-43. (In Russian)

18. Nakagawa T., Hu H., Zharikov S. et al. A causal role for uric acid in fructose- induced metabolic syndrome American Journal of Physiology Renal Physiology, 2006; 290(3): 625-631.
https://doi.org/10.1152/ajprenal.00140.2005
PMid:16234313

19. Nakagawa T., Tuttle K.R., Short R.A. et al. Hypothesis: fructose- induced hyperuricaemia as a causal mechanism for the epidemic of the metabolic syndrome. Nature Clinical Practice Nephrology, 2005; 1(2): 80-86.
https://doi.org/10.1038/ncpneph0019
PMid:16932373

20. Perheentupa J., Raivio K. Fructose-induced hyperuricaemia Lancet, 1967; 290(2): 528-531.
https://doi.org/10.1016/S0140-6736(67)90494-1

21. Pons R., Ford B., Chiriboga C.A. et al. Aromatic L-amino acid decarboxylase deficiency: clinical features, treatment, and prognosis Neurology, 2004; 62(7): 1068-1065.
https://doi.org/10.1212/WNL.62.7.1058
PMid:15079002

22. Rao U., Hammen C., Ortiz L.R. Effects of early and recent adverse experiences on adrenal response to psychosocial stress in depressed adolescents. Biological Psychiatry, 2008; 64(6): 521-526.
https://doi.org/10.1016/j.biopsych.2008.05.012
PMid:18597740 PMCid:PMC2559463

23. Ruddick J., Evans A., Nutt D. et al. Tryptophan metabolism in central nervous system: medical implication. Expert Reviews in Molecular Medicine, 2006; 8(20): 1-27.
https://doi.org/10.1017/S1462399406000068
PMid:16942634

24. Rudichenko V.М. Consumption of fructose and hyperuricemia, gout: relevance in the general/family medicine practitioner. Modern Gastroenterology, 2013; 3(71): 115-125. (In Ukrainian)

25. Sachs B.D., Jacobsen J.P., Thomas T.L. The effects of congenital brain serotonin deficiency on responses to chronic fluoxetine. Translational Psychiatry, 2013; 13(3): 1-9.
https://doi.org/10.1038/tp.2013.65
PMid:23942622 PMCid:PMC3756292

26. Sánchez A., Contreras C., Martínez M. P. et al. Role of neural NO synthase (nNOS) uncoupling in the dysfunctional nitrergic vasorelaxation of penile arteries from insulin-resistant obese Zucker rats. Public Library of Science, 2012; 7(4): art. no. e36027.
https://doi.org/10.1371/journal.pone.0036027
PMid:22540017 PMCid:PMC3335073

27. Sanchez-Lozada L.G., Tapia E., Jimenez A. et al. Fructose-induced metabolic syndrome is associated with glomerular hypertension and renal microvascular damage in rats. American Journal of Physiology. Renal Physiology, 2007; 292(1): 423-429.
https://doi.org/10.1152/ajprenal.00124.2006
PMid:16940562

28. Sangwan R., Mishra S., Kumar S. Direct fluorometry of phase-extracted tryptamine-based fast quantitative assay of L-tryptophan decarboxylase from Catharanthus roseus leaf. Analytical Biochemistry, 1998; 255(1): 39-46.
https://doi.org/10.1006/abio.1997.2377
PMid:9448840

29. Schott D.A., Nicolai J., de Vries J.E. et al. Disorder in the Serotonergic System due to Tryptophan Hydroxylation Impairment: A Cause of Hypothalamic Syndrome? Hormone Research in Paediatrics, 2010; 73(1): 68-73.
https://doi.org/10.1159/000271918
PMid:20190542

30. Seidell J.S. Obesity, insulin resistance and diabetes a worldwide epidemic. British Journal of Nutrition, 2000; 83(1): 5-8.
https://doi.org/10.1017/S000711450000088X
PMid:10889785

31. Shibata K, Fukuwatari T.J. The metabolites in the tryptophan degradation pathway might be useful to determine the tolerable upper intake level of tryptophan intake in rats. Nutrition, 2012; 142(12): 2227-2230.
https://doi.org/10.3945/jn.112.163469
PMid:23077199

32. Toker L., Amar S., Bersudsky Y. The Biology of Tryptophan Depletion and Mood Disorders. Israel Journal of Psychiatry & Related Sciences, 2010; 47(1): 46-55.

33. Yanagida O., Kanai Y., Chairoungdua A. et al. Human L-type amino acid transporter 1 (LAT1): characterization of function and expression in tumor cell lines. Biochimica et Biophysica Acta, 2001; 1514(2): 291-302.
https://doi.org/10.1016/S0005-2736(01)00384-4


Refbacks

  • There are currently no refbacks.


Copyright (c) 2014 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.