EFFECT OF AGMATINE ON ACTIN POLYMERIZATION IN LEUKOCYTES OF STREPTOZOTOCIN-INDUCED DIABETIC RATS
DOI: http://dx.doi.org/10.30970/sbi.0803.377
Abstract
It has been shown that agmatine affects the process of actin polymerization in leukocytes from both healthy rats and rats with experimentally induced diabetes mellitus (EDM). Our studies revealed that the initial general F-actin level in the leukocytes of diabetic rats was substantially higher than in the leukocytes of the healthy animals. This implies that leukocytes undergo a number of structural and functional changes and are in pre-activated state at the diabetes mellitus conditions. While the total actin content in the leukocytes of EDM rats dropped, we observed a redistribution of actin fractions, namely the level of cytoskeletal actin filaments decreased, whereas the abundunce of short actin filaments increased. Thus, actin polymerization intensifies in EDM conditions, although the initial actin content decreases. Agmatine administration to the control group of animals didn’t lead to significant changes in general actin content in leukocytes, while the level of actin monomers decreased due to polymerization and short actin filaments formation. Treatment of the diabetic rats with agmatine resulted in elevated content of both general actin and cytoskeletal actin filaments as a result of reorganization of short actin filaments. Our data suggest that this polyamine directly or indirectly affects the functional state of leukocytes via altered cytoskeleton formation.
Keywords
Full Text:
PDFReferences
1. Advani A., Marshall S., Thomas T. Increasing neutrophil F-actin corrects CD11b exposure in Type 2 diabetes. Eur. J. Clin. Invest, 2004; 34(5): 358-364. | |
| |
2. Aiba Y., Kameyama M., Yamazaki T. et al. Regulation of B-cell development by BCAP and CD19 through their binding to phosphoinositide 3-kinase. Blood, 2008; 111(3): 1497-1503. | |
| |
3. Alba-Loureiro T.C., Munhoz C.D., Martins J.O. et al. Neutrophil function and metabolism in individuals with diabetes mellitus. Brazilian Journal of Medical and Biological Research, 2007; 40: 1037-1044. | |
| |
4. Algeciras-Schimnich A., Shen L., Barnhart B.C. et al. Molecular ordering of the initial signaling events of CD95. Mol. Cell Biol, 2002; 22: 207-220. | |
| |
5. Arndt M.A, Battaglia, V., Parisi E. et al. The arginine metabolite agmatine protects mitochondrial function and confers resistance to cellular apoptosis. Am. J. Physiol. Cell. Physiol, 2009; 296: 1411-1419. | |
| |
6. Auguet M., Viossat I., Marin J.G., Chabrier P.E. Selective inhibition of inducible nitric oxide synthase by agmatine. Jpn. J. Pharmacol, 1995; 69(3); 285-287. | |
| |
7. Biochemistry. Molecular probes. Section 11.1 Probes for Actin. 33, 14387, 1994: 455-462 / www.probes.com. | |
| |
8. Cano M.L., Cassimeris L., Fechheimer M., Zigmond S.H. Mechanisms Responsible for F-actin Stabilization after Lysis of Polymorphonuclear Leukocytes. The J. of Cell Biology, 1992; 116(5): 1123-1134. | |
| |
9. Carulli G., Mattii L., Azzara A. et al. Actin Polymerization in Neutrophils from Donors of Peripheral Blood Stem Cells: Divergent Effects of Glycosylated and Nonglycosylated Recombinant Human Granulocyte Colony-Stimulating Factor. American Journal of Hematology, 2006; 81: 318-323. | |
| |
10. Cicchetti G., Allen P.G., Glogauer M. Chemotactic signaling pathways in neutrophils: from receptor to actin assembly. Crit. Rev. Oral. Biol. Med, 2003; 13: 220-228. | |
| |
11. Clevers H., Dunlap S., Terhorst C. The transmembrane orientation of the e chain of the TcR/CD3 complex. European J. of Immunology, 2005; 18(5): 705-710. | |
| |
12. Collison K.S., Parhar R.S., Saleh S.S. et al. RAGE-mediated neutrophil dysfunction is evoked by advanced glycation end products (AGEs). J. Leukocyte Biology, 2002; 71: 433-444. | |
| |
13. Fais S., Malorni W. Leukocyte uropod formation and membrane/cytoskeleton linkage in immune interactions. J. of Leukocyte Biology, 2003; 73: 556-563. | |
| |
14. Ferents I.V., Brodyak I.V., Lyuta M.Ya. et al. Effect of agmatine on the blood system parameters of rats under the condition of experimental diabetes mellitus. Studia Biologica, 2012; 6(3): 65-72. | |
| |
15. Fox J.E., Boyles J.K., Berndt M.C. et al. Identification of a membrane skeleton in platelets. J. Cell Biol, 1988; 106: 1525-1538. | |
| |
16. Giammarioli A.M., Garofalo T., Sorice M. et al. GD3 glycosphingolipid contributes to Fas-mediated apoptosis via association with ezrin cytoskeletal protein. FEBS Lett, 2001; 506: 45-50. | |
| |
17. Guo P., Zhang Y., Zhao J.H. et al. Regulation on the expression and N-glycosylation of integrins by N-acetylglucosaminyltransferase V. Biochem. Biophys. Res. Commun, 2003; 310(2): 619-626. | |
| |
18. Hannigan M., Zhan L., Ai Y., Huang C.-K. Leukocyte-specific gene 1 protein (LSP1) is involved in chemokine KC-activated cytoskeletal reorganization in murine neutrophils in vitro. J. of Leukocyte Biology, 2001; 69: 497-504. | |
| |
19. Hartwig J.H., Shevlin P. The architecture of actin filaments and the ultrastructural location of actin-binding protein in the periphery of lung macrophages. J. Cell Biol, 1986; 103: 1007-1020. | |
| |
20. Hwang S.L., Liu I.M., Tzeng T.F., Cheng J.T. Activation of imidazoline receptors in adrenal gland to lower plasma glucose in streptozotocin-induced diabetic rats. Diabetologia, 2005; 48(4): 767-775. | |
| |
21. Kleveta G., Borzecka K., Zdioruk M. et al. LPS induces phosphorylation of actin-regulatory proteins leading to actin reassembly and macrophage motility. J. of Cellular Biochemistry, 2012; 113: 80-92. | |
| |
22. Kong L., Ge B.X. MyD88-independent activation of a novel actin-Cdc42/Rac pathway is required for Toll-like receptor-stimulated phagocytosis. Cell Res, 2008; 18: 745-755. | |
| |
23. Kwiatkowska K., Frey J., Sobota A. Phosphorylation of FcgRIIA is required for the receptor-induced actin rearrangement and capping: The role of membrane rafts. J. Cell Sci, 2003; 116: 537-550. | |
| |
24. Kwiatkowska K., Sobota A. Engagement of spectrin and actin capping of FcgRII revealed by studies on permeabilized U937 cells. Biochem. and Biophys. Research Communications, 1999; 259(2): 287-293. | |
| |
25. McManus L.M., Bloodworth R.C., Prihoda T.J. et al. Agonist-dependent failure of neutrophil function in diabetes correlates with extent of hyperglycemia. J. Leukocyte Biology, 2001; 70: 395-404. | |
| |
26. Mitoma J. et al. Critical functions of N-glycans in L-selectin-mediated lymphocyte homing and recruitment. Nat. Immunol, 2007; 8: 409-418 | |
| |
27. Niggli V. Signaling to migration in neutrophils: importance of localized pathways. Int. J. Biochem. Cell Biol, 2003; 35: 1619-1638. | |
| |
28. Nunoi H., Yamazaki T., Kanegasaki S. Neutrophil cytoskeletal disease. Int. J. Hematol, 2001; 74(2): 119-124. | |
| |
29. Özyazgan S., Bicakci B., Ozaydin A. et al. The effect of agmatine on the vascular reactivity in streptozotocin-diabetic rats. Pharmacol Res, 2003; 48(2): 133-138. | |
| |
30. Pollard T.D., Borisy G.G. Cellular motility driven by assembly and disassembly of actin filaments. Cell, 2003; 112: 453-465. | |
| |
31. Raasch W., Schafer U., Chun J., Dominiak P. Biological significance of agmatine, an endogenous ligand at imidazoline binding sites. Br. J. Pharmacol, 2001; 133(6): 755-780. | |
| |
32. Samstag Y., Eibert S.M., Klemke M., Wabnitz G.H. Actin cytoskeletal dynamics in T lymphocyte activation and migration. J. of Leukocyte Biology, 2003; 73: 30-48. | |
| |
33. Satriano J., Matsufujii S., Murakamii Y. et al. Agmatine suppresses proliferation by frameshift induction of antizyme and attenuation of cellular polyamine levels. J. Biol. Chem, 1998; 273(25): 15313-15316. | |
| |
34. Sybirna N.О., Zdioryk M.І., Brodyak І.V. et al. Activation of the phosphatidylinositol-3′-kinase pathway of lectin-induced signal by siaolocontaining leukocytes membrane glycoprotein in healthy donors and under type 1 diabetes mellitus. Ukr. Biochem. J, 2011; 83(5): 22-31. | |
| |
35. Sybirna N.О., Zdioryk M.І., Brodyak І.V. et al. Activation of the phosphatidylinositol-3′-kinase pathway of lectin-induced signal by siaolocontaining leukocytes membrane glycoprotein in healthy donors and under type 1 diabetes mellitus. Ukr. Biochem. J, 2011; 83(5): 22-31. | |
| |
36. Tipu H.N., Ahmed T.A., Bashir M.M. Human Leukocyte Antigen Class II Susceptibility Conferring Alleles Among Non-Insulin Dependent Diabetes Mellitus Patients. J. of the College of Physicians and Surgeons Pakistan, 2011; 21(1): 26-29. | |
| |
37. Yu W., Cassara J., Weller P.F. Phosphatidylinositide 3-kinase localizes to cytoplasmic lipid bodies in human polymorphonuclear leukocytes and other myeloid-derived cells. Blood, 2000, 95(3): 1078-1085. | |
| |
38. Zemans R.I., Arndt P.G. Tec kinases regulate actin assembly and cytokine expression in LPS-stimulated human neutrophiks via JNK activation. Cell Immunol, 2009; 258: 90-97. | |
| |
39. Zemans R.I., Arndt P.G. Tec kinases regulate actin assembly and cytokine expression in LPS-stimulated human neutrophiks via JNK activation. Cell Immunol, 2009; 258: 90-97. |
Refbacks
- There are currently no refbacks.
Copyright (c) 2014 Studia biologica
This work is licensed under a Creative Commons Attribution 4.0 International License.