ENDOPHYTIC BACTERIA OF WHEAT AND THE POTENTIAL TO IMPROVE MICROELEMENT COMPOSITION OF GRAIN
DOI: http://dx.doi.org/10.30970/sbi.1603.692
Abstract
In sustainable agriculture, there is a tendency for an increased use of microbiological preparations, especially plant growth promoting bacteria (PGPB), that can supplement the phenotypic plasticity and adaptability of plants, stimulate their growth and development, increase resistance to stress. The endophytic PGPB could be a promising element of technologies for the improvement of mineral nutrition and promotion of growth and yield of wheat (Triticum spp.). They are transferred to the plant by a horizontal, from the environment (rhizosphere, phyllosphere), or a vertical, from the seeds (from generation to generation), way. The growth-promoting effect of endophytes is mediated by the synthesis and secretion of phytohormones and secondary metabolites as well as their ability to absorb N2, suppress the development of bacterial and/or fungal phytopathogens; improve mineral nutrition. The review elucidates current data on the presence of bacterial endophytes in various organs of wheat plants and their characterization as potential PGPB. Data on the most common genera of bacterial endophytes of wheat (Bacillus, Micrococcus, Staphylococcus, Pseudomonas, Pantoea, Kosakonia, etc.) are presented, and their influence on plants is described, in particular, the effect on the absorption of micronutrients important for plants and humans such as iron (Fe) and zinc (Zn), resistance to stress factors and growth. The varietal differences in the wheat endophytic microbiome are noted. An increased micronutrient absorption and assimilation assisted by the bacterial endophytes are associated with the changes in endogenous auxins and ethylene, the release of organic acids, siderophores, indirect activation of metal transporters, etc. The mechanisms underlying plant growth stimulation are complex due to interactions between a microorganism and the whole plant microbiome and their changes during the plant ontogenesis. The analysis of the published data confirms the need for further studies of the species composition and mechanisms of interaction of endophytic PGPB to develop new strategies for improving mineral nutrition of wheat and trace element biofortification of grain. It is a feasible and promising technology of the future to overcome the problems of hidden hunger and provide quality food products to the world population with available resources and a reduced negative impact on the environment.
Keywords
Full Text:
PDF (Українська)References
Afridi, M. S., Amna, Sumaira, Mahmood, T., Salam, A., Mukhtar, T., Mehmood, S., Ali, J., Khatoon, Z., Bibi, M., Javed, M. T., Sultan, T., & Chaudhary, H. J. (2019). Induction of tolerance to salinity in wheat genotypes by plant growth promoting endophytes: Involvement of ACC deaminase and antioxidant enzymes. Plant Physiology and Biochemistry, 139, 569-577. doi:10.1016/j.plaphy.2019.03.041 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Ali, M. W., & Borrill, P. (2020). Applying genomic resources to accelerate wheat biofortification. Heredity, 125(6), 386-395. doi:10.1038/s41437-020-0326-8 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Asaf, S., Khan, M. A., Khan, A. L., Waqas, M., Shahzad, R., Kim, A.-Y., Kang, S.-M., & Lee, I.-J. (2017). Bacterial endophytes from arid land plants regulate endogenous hormone content and promote growth in crop plants: an example of Sphingomonas sp. and Serratia marcescens. Journal of Plant Interactions, 12(1), 31-38. doi:10.1080/17429145.2016.1274060 Crossref ● Google Scholar | ||||
| ||||
Athukorala, A. D. S. N. P. (2021). Solubilization of micronutrients using indigenous microorganisms (pp. 365-417). In: P. Bhatt, S. Gangola, D. Udayanga, & G. Kumar (Eds). Microbial technology for sustainable environment. Singapore: Springer. doi:10.1007/978-981-16-3840-4_21 Crossref ● Google Scholar | ||||
| ||||
Bacon, C. W., & Hinton, D. M. (2007). Potential for control of seedling blight of wheat caused by Fusarium graminearumand related species using the bacterial endophyte Bacillus mojavensis. Biocontrol Science and Technology, 17(1), 81-94. doi:10.1080/09583150600937006 Crossref ● Google Scholar | ||||
| ||||
Bakhtiyarifar, M., Enayatizamir, N., & Mehdi Khanlou, K. (2020). Biochemical and molecular investigation of non-rhizobial endophytic bacteria as potential biofertilisers. Archives of Microbiology, 203(2), 513-521. doi:10.1007/s00203-020-02038-z Crossref ● PubMed ● Google Scholar | ||||
| ||||
Becker, M., Patz, S., Becker, Y., Berger, B., Drungowski, M., Bunk, B., Overmann, J., Spröer, C., Reetz, J., Tchuisseu Tchakounte, G. V., & Ruppel, S. (2018). Comparative genomics reveal a flagellar system, a type VI secretion system and plant growth-promoting gene glusters unique to the endophytic bacterium Kosakonia radicincitans. Frontiers in Microbiology, 9, 1997. doi:10.3389/fmicb.2018.01997 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Berger, B., Wiesner, M., Brock, A. K., Schreiner, M., & Ruppel, S. (2015). K. radicincitans, a beneficial bacteria that promotes radish growth under field conditions. Agronomy for Sustainable Development, 35(4), 1521-1528. doi:10.1007/s13593-015-0324-z Crossref ● Google Scholar | ||||
| ||||
Bianco, C., Imperlini, E., Calogero, R., Senatore, B., Amoresano, A., Carpentieri, A., Pucci, P., & Defez, R. (2006). Indole-3-acetic acid improves Escherichia coli's defences to stress. Archives of Microbiology, 185(5), 373-382. doi:10.1007/s00203-006-0103-y Crossref ● PubMed ● Google Scholar | ||||
| ||||
Brader, G., Compant, S., Mitter, B., Trognitz, F., & Sessitsch, A. (2014). Metabolic potential of endophytic bacteria. Current Opinion in Biotechnology, 27, 30-37. doi:10.1016/j.copbio.2013.09.012 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Brady, C., Cleenwerck, I., Venter, S., Coutinho, T., & De Vos, P. (2013). Taxonomic evaluation of the genus Enterobacter based on multilocus sequence analysis (MLSA): proposal to reclassify E. nimipressuralis and E. amnigenus into Lelliottia gen. nov. as Lelliottia nimipressuralis comb. nov. and Lelliottia amnigena comb. nov., respectively, E. gergoviae and E. pyrinus into Pluralibacter gen. nov. as Pluralibacter gergoviae comb. nov. and Pluralibacter pyrinus comb. nov., respectively, E. cowanii, E. radicincitans, E. oryzae and E. arachidis into Kosakonia gen. nov. as Kosakonia cowanii comb. nov., Kosakonia radicincitans comb. nov., Kosakonia oryzae comb. nov. and Kosakonia arachidis comb. nov., respectively, and E. turicensis, E. helveticus and E. pulveris into Cronobacter as Cronobacter zurichensis nom. nov., Cronobacter helveticus comb. nov. and Cronobacter pulveris comb. nov., respectively, and emended description of the genera Enterobacter and Cronobacter. Systematic and Applied Microbiology, 36(5), 309-319. doi:10.1016/j.syapm.2013.03.005 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Bulgarelli, D., Rott, M., Schlaeppi, K., Ver Loren van Themaat, E., Ahmadinejad, N., Assenza, F., Rauf, P., Huettel, B., Reinhardt, R., Schmelzer, E., Peplies, J., Gloeckner, F. O., Amann, R., Eickhorst, T., & Schulze-Lefert, P. (2012). Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature, 488(7409), 91-95. doi:10.1038/nature11336 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Carroll, G., & Petrini, O. (1983). Patterns of substrate utilization by some fungal endophytes from coniferousfoliage. Mycologia, 75(1), 53-63. doi:10.1080/00275514.1983.12021637 Crossref ● Google Scholar | ||||
| ||||
Chee-Sanford, J. C., Williams, M. M., Davis, A. S., & Sims, G. K. (2006). Do microorganisms influence seed-bank dynamics? Weed Science, 54(3), 575-587. doi:10.1614/ws-05-055r.1 Crossref ● Google Scholar | ||||
| ||||
Chen, C., Xin, K., Liu, H., Cheng, J., Shen, X., Wang, Y., & Zhang, L. (2017). Pantoea alhagi, a novel endophytic bacterium with ability to improve growth and drought tolerance in wheat. Scientific Reports, 7(1), 41564. doi:10.1038/srep41564 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Cheng, C., Wang, R., Sun, L., He, L., & Sheng, X. (2021). Cadmium-resistant and arginine decarboxylase-producing endophytic Sphingomonas sp. C40 decreases cadmium accumulation in host rice (Oryza sativa Cliangyou 513). Chemosphere, 275, 130109. doi:10.1016/j.chemosphere.2021.130109 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Cherif-Silini, H., Silini, A., Yahiaoui, B., Ouzari, I., & Boudabous, A. (2016). Phylogenetic and plant-growth-promoting characteristics of Bacillus isolated from the wheat rhizosphere. Annals of Microbiology, 66(3), 1087-1097. doi:10.1007/s13213-016-1194-6 Crossref ● Google Scholar | ||||
| ||||
Cherif-Silini, H., Thissera, B., Bouket, A. C., Saadaoui, N., Silini, A., Eshelli, M., Alenezi, F. N., Vallat, A., Luptakova, L., Yahiaoui, B., Cherrad, S., Vacher, S., Rateb, M. E., & Belbahri, L. (2019). Durum wheat stress tolerance induced by endophyte Pantoea agglomerans with genes contributing to plant functions and secondary metabolite arsenal. International Journal of Molecular Sciences, 20(16), 3989. doi:10.3390/ijms20163989 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Chouhan, G. K., Verma, J. P., Jaiswal, D. K., Mukherjee, A., Singh, S., de Araujo Pereira, A. P., Liu, H., Abd_Allah, E. F., & Singh, B. K. (2021). Phytomicrobiome for promoting sustainable agriculture and food security: opportunities, challenges, and solutions. Microbiological Research, 248, 126763. doi:10.1016/j.micres.2021.126763 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Comby, M., Gacoin, M., Robineau, M., Rabenoelina, F., Ptas, S., Dupont, J., Profizi, C., & Baillieul, F. (2017). Screening of wheat endophytes as biological control agents against Fusarium head blight using two different in vitro tests. Microbiological Research, 202, 11-20. doi:10.1016/j.micres.2017.04.014 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Compant, S., Cambon, M. C., Vacher, C., Mitter, B., Samad, A., & Sessitsch, A. (2020). The plant endosphere world – bacterial life within plants. Environmental Microbiology, 23(4), 1812-1829. doi:10.1111/1462-2920.15240 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Cope-Selby, N., Cookson, A., Squance, M., Donnison, I., Flavell, R., & Farrar, K. (2016). Endophytic bacteria in Miscanthus seed: implications for germination, vertical inheritance of endophytes, plant evolution and breeding. GCB Bioenergy, 9(1), 57-77. doi:10.1111/gcbb.12364 Crossref ● Google Scholar | ||||
| ||||
Cordovez, V., Dini-Andreote, F., Carrión, V. J., & Raaijmakers, J. M. (2019). Ecology and evolution of plant microbiomes. Annual Review of Microbiology, 73(1), 69-88. doi:10.1146/annurev-micro-090817-062524 Crossref ● PubMed ● Google Scholar | ||||
| ||||
De Bary, A (1884). Vergleichende morphologie und biologie der pilze mycetozoen und bacterien. Leipzig: Verlag von Wilhelm Engelmann. doi:10.5962/bhl.title.42380 Crossref ● Google Scholar | ||||
| ||||
de Santiago, A., Quintero, J. M., Avilés, M., & Delgado, A. (2010). Effect of Trichoderma asperellum strain T34 on iron, copper, manganese, and zinc uptake by wheat grown on a calcareous medium. Plant and Soil, 342(1-2), 97-104. doi:10.1007/s11104-010-0670-1 Crossref ● Google Scholar | ||||
| ||||
Deng, S., Liu, Y., Deng, Z., & Huang, Y. (2021). Isolation of actinobacterial endophytes from wheat sprouts as biocontrol agents to control seed pathogenic fungi. Archives of Microbiology, 203(10), 6163-6171. doi:10.1007/s00203-021-02581-3 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Deroo, W., De Troyer, L., Dumoulin, F., De Saeger, S., De Boevre, M., Vandenabeele, S., De Gelder, L., & Audenaert, K. (2022). A novel in planta enrichment method employing Fusarium graminearum-infected wheat spikes to select for competitive biocontrol bacteria. Toxins, 14(3), 222. doi:10.3390/toxins14030222 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Devi, R., Kaur, T., Kour, D., Yadav, A. N., & Suman, A. (2022). Potential applications of mineral solubilizing rhizospheric and nitrogen fixing endophytic bacteria as microbial consortium for the growth promotion of chilli (Capsicum annum L.). Biologia. doi:10.1007/s11756-022-01127-2 Crossref ● Google Scholar | ||||
| ||||
Dhaliwal, S. S., Sharma, V., Shukla, A. K., Verma, V., Kaur, M., Shivay, Y. S., Nisar, S., Gaber, A., Brestic, M., Barek, V., Skalicky, M., Ondrisik, P., & Hossain, A. (2022). Biofortification-A frontier novel approach to enrich micronutrients in field crops to encounter the nutritional security. Molecules, 27(4), 1340. doi:10.3390/molecules27041340 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Díaz Herrera, S., Grossi, C., Zawoznik, M., & Groppa, M. D. (2016). Wheat seeds harbour bacterial endophytes with potential as plant growth promoters and biocontrol agents of Fusarium graminearum. Microbiological Research, 186-187, 37-43. doi:10.1016/j.micres.2016.03.002 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Dif, G., Belaouni, H. A., Goudjal, Y., Yekkour, A., Djemouai, N., & Zitouni, A. (2021). Potential for plant growth promotion of Kocuria arsenatis Strain ST19 on tomato under salt stress conditions. South African Journal of Botany, 138, 94-104. doi:10.1016/j.sajb.2020.12.014 Crossref ● Google Scholar | ||||
| ||||
Doolotkeldieva, T. D. (2010). Microbiological control of flour-manufacture: dissemination of mycotoxins producing fungi in cereal products. Microbiology Insights, 3, MBI.S3822. doi:10.4137/mbi.s3822 Crossref ● Google Scholar | ||||
| ||||
Dudeja, S. S., Suneja-Madan, P., Paul, M., Maheswari, R., & Kothe, E. (2021). Bacterial endophytes: molecular interactions with their hosts. Journal of Basic Microbiology, 61(6), 475-505. doi:10.1002/jobm.202000657 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Durán, P., Tortella, G., Viscardi, S., Barra, P. J., Carrión, V. J., Mora, M. de la L., & Pozo, M. J. (2018). Microbial community composition in take-all suppressive soils. Frontiers in Microbiology, 9. doi:10.3389/fmicb.2018.02198 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Dutkiewicz, J., Mackiewicz, B., Lemieszek, M. K., Golec, M., & Milanowski, J. (2016). Pantoea agglomerans: a mysterious bacterium of evil and good. Part IV. Beneficial effects. Annals of Agricultural and Environmental Medicine, 23(2), 206-222. doi:10.5604/12321966.1203879 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Edwards, J., Johnson, C., Santos-Medellín, C., Lurie, E., Podishetty, N. K., Bhatnagar, S., Eisen, J. A., & Sundaresan, V. (2015). Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences, 112(8). doi:10.1073/pnas.1414592112 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Ek-Ramos, M. J., Gomez-Flores, R., Orozco-Flores, A. A., Rodríguez-Padilla, C., González-Ochoa, G., & Tamez-Guerra, P. (2019). Bioactive products from plant-endophytic Gram-positive bacteria. Frontiers in Microbiology, 10, 463. doi:10.3389/fmicb.2019.00463 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Emami, S., Alikhani, H. A., Pourbabaei, A. A., Etesami, H., Motashare Zadeh, B., & Sarmadian, F. (2018). Improved growth and nutrient acquisition of wheat genotypes in phosphorus deficient soils by plant growth-promoting rhizospheric and endophytic bacteria. Soil Science and Plant Nutrition, 64(6), 719-727. doi:10.1080/00380768.2018.1510284 Crossref ● Google Scholar | ||||
| ||||
Emami, S., Alikhani, H. A., Pourbabaei, A. A., Etesami, H., Sarmadian, F., & Motessharezadeh, B. (2019). Effect of rhizospheric and endophytic bacteria with multiple plant growth promoting traits on wheat growth. Environmental Science and Pollution Research, 26(19), 19804-19813. doi:10.1007/s11356-019-05284-x Crossref ● PubMed ● Google Scholar | ||||
| ||||
Erdemci, İ. (2021). Effects of seed microbial Inoculant on growth, yield, and nutrition of durum wheat (Triticum Durum L.). Communications in Soil Science and Plant Analysis, 52(7), 792-801. doi:10.1080/00103624.2020.1869764 Crossref ● Google Scholar | ||||
| ||||
FAOSTAT (2020). Food and agriculture organization of the united nations. Food Agric data. Retrieved from http://www.fao.org/faostat/en/#data Google Scholar | ||||
| ||||
Fasim, F., Ahmed, N., Parsons, R., & Gadd, G. M. (2002). Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiology Letters, 213(1), 1-6. doi:10.1111/j.1574-6968.2002.tb11277.x Crossref ● PubMed ● Google Scholar | ||||
| ||||
Ferreira, A., Quecine, M. C., Lacava, P. T., Oda, S., Azevedo, J. L., & AraÃjo, W. L. (2008). Diversity of endophytic bacteria from Eucalyptus species seeds and colonization of seedlings by Pantoea agglomerans. FEMS Microbiology Letters, 287(1), 8-14. doi:10.1111/j.1574-6968.2008.01258.x Crossref ● PubMed ● Google Scholar | ||||
| ||||
Galanakis, C. M. (Ed.). (2021). Trends in wheat and bread making. Academic Press. Google Scholar | ||||
| ||||
Garnica, M., Bacaicoa, E., Mora, V., San Francisco, S., Baigorri, R., Zamarreño, A. M., & Garcia-Mina, J. M. (2018). Shoot iron status and auxin are involved in iron deficiency-induced phytosiderophores release in wheat. BMC Plant Biology, 18(1), 105. doi:10.1186/s12870-018-1324-3 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Gerna, D., Roach, T., Mitter, B., Stöggl, W., & Kranner, I. (2020). Hydrogen peroxide metabolism in interkingdom interaction between bacteria and wheat seeds and seedlings. Molecular Plant-Microbe Interactions, 33(2), 336-348. doi:10.1094/mpmi-09-19-0248-r Crossref ● PubMed ● Google Scholar | ||||
| ||||
Glick, B. R. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research, 169(1), 30-39. doi:10.1016/j.micres.2013.09.009 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Gupta, P. K., Balyan, H. S., Sharma, S., & Kumar, R. (2020). Biofortification and bioavailability of Zn, Fe and Se in wheat: present status and future prospects. Theoretical and Applied Genetics, 134(1), 1-35. doi:10.1007/s00122-020-03709-7 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Haidar, B., Ferdous, M., Fatema, B., Ferdous, A. S., Islam, M. R., & Khan, H. (2018). Population diversity of bacterial endophytes from jute (Corchorus olitorius) and evaluation of their potential role as bioinoculants. Microbiological Research, 208, 43-53. doi:10.1016/j.micres.2018.01.008 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Hardoim, P. R., van Overbeek, L. S., Berg, G., Pirttilä, A. M., Compant, S., Campisano, A., Döring, M., & Sessitsch, A. (2015). The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews, 79(3), 293-320. doi:10.1128/mmbr.00050-14 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Hussain, A., Amna, Kamran, M. A., Javed, M. T., Hayat, K., Farooq, M. A., Ali, N., Ali, M., Manghwar, H., Jan, F., & Chaudhary, H. J. (2019). Individual and combinatorial application of Kocuria rhizophila and citric acid on phytoextraction of multi-metal contaminated soils by Glycine max L. Environmental and Experimental Botany, 159, 23-33. doi:10.1016/j.envexpbot.2018.12.006 Crossref ● Google Scholar | ||||
| ||||
Hussain, A., Arshad, M., Zahir, Z. A. & Asghar, M. (2015). Prospects of zinc solubilizing bacteria for enhancing growth of maize. Pakistan Journal of Agricultural Sciences, 52, 915-922. Google Scholar | ||||
| ||||
Jaiswal, D. K., Krishna, R., Chouhan, G. K., de Araujo Pereira, A. P., Ade, A. B., Prakash, S., Verma, S. K., Prasad, R., Yadav, J., & Verma, J. P. (2022). Bio-fortification of minerals in crops: current scenario and future prospects for sustainable agriculture and human health. Plant Growth Regulation, 98(1), 5-22. doi:10.1007/s10725-022-00847-4 Crossref ● Google Scholar | ||||
| ||||
Jawaldeh, A. A., Pena-Rosas, J. P., McColl, K., Johnson, Q., Elmadfa, I., & Nasreddine, L. (2019). Wheat flour fortification in the Eastern Mediterranean Region. Cairo: WHO Regional Office for the Eastern Mediterranean. Licence: CC BY-NC-SA 3.0 IGO. Google Scholar | ||||
| ||||
Jayakumar, A., Krishna, A., Nair, I. C., & Radhakrishnan, E. K. (2020). Drought-tolerant and plant growth-promoting endophytic Staphylococcus sp. having synergistic effect with silicate supplementation. Archives of Microbiology, 202(7), 1899-1906. doi:10.1007/s00203-020-01911-1 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Jiang, L., Jeong, J. C., Lee, J.-S., Park, J. M., Yang, J.-W., Lee, M. H., Choi, S. H., Kim, C. Y., Kim, D.-H., Kim, S. W., & Lee, J. (2019). Potential of Pantoea dispersa as an effective biocontrol agent for black rot in sweet potato. Scientific Reports, 9(1), 16354. doi:10.1038/s41598-019-52804-3 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Johnston-Monje, D., Gutiérrez, J. P., & Lopez-Lavalle, L. A. B. (2021). Seed-transmitted bacteria and fungi dominate juvenile plant microbiomes. Frontiers in Microbiology, 12, 737616. doi:10.3389/fmicb.2021.737616 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Johnston-Monje, D., Mousa, W. K., Lazarovits, G., & Raizada, M. N. (2014). Impact of swapping soils on the endophytic bacterial communities of pre-domesticated, ancient and modern maize. BMC Plant Biology, 14(1), 233. doi:10.1186/s12870-014-0233-3 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Kabir, A. H., Khatun, M. A., Hossain, M. M., Haider, S. A., Alam, M. F., & Paul, N. K. (2016). Regulation of phytosiderophore release and antioxidant defense in roots driven by shoot-based auxin signalling confers tolerance to excess iron in wheat. Frontiers in Plant Science, 7, 1684. doi:10.3389/fpls.2016.01684 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Kaga, H., Mano, H., Tanaka, F., Watanabe, A., Kaneko, S., & Morisaki, H. (2009). Rice seeds as sources of endophytic bacteria. Microbes and Environments, 24(2), 154-162. doi:10.1264/jsme2.ME09113 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Kamran, S., Shahid, I., Baig, D. N., Rizwan, M., Malik, K. A., & Mehnaz, S. (2017). Contribution of zinc solubilizing bacteria in growth promotion and zinc content of wheat. Frontiers in Microbiology, 8, 2593. doi:10.3389/fmicb.2017.02593 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Khan, A. L., Waqas, M., Kang, S. M., Al-Harrasi, A., Hussain, J., Al-Rawahi, A., Al-Khiziri, S., Ullah, I., Ali, L., Jung, H. Y., & Lee, I. J. (2014). Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. Journal of Microbiology, 52(8), 689-695. doi:10.1007/s12275-014-4002-7 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Kang, X., Zhang, W., Cai, X., Zhu, T., Xue, Y., & Liu, C. (2018). Bacillus velezensis CC09: a potential 'vaccine' for controlling wheat diseases. Molecular Plant-Microbe Interactions, 31(6), 623-632. doi:10.1094/MPMI-09-17-0227-R Crossref ● PubMed ● Google Scholar | ||||
| ||||
Khan, N., Martínez-Hidalgo, P., Ice, T. A., Maymon, M., Humm, E. A., Nejat, N., Sanders, E. R., Kaplan, D., & Hirsch, A. M. (2018). Antifungal activity of Bacillus species against Fusarium and analysis of the potential mechanisms used in biocontrol. Frontiers in Microbiology, 9, 2363. doi:10.3389/fmicb.2018.02363 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Khan, A., Singh, J., Upadhayay, V. K., Singh, A. V., & Shah, S. (2019). Microbial biofortification: a green technology through plant growth promoting microorganisms (pp. 255-269). In S. Shah, V. Venkatramanan, & R. Prasad (Eds). Sustainable green technologies for environmental management. Singapore: Springer. doi:10.1007/978-981-13-2772-8_13 Crossref ● Google Scholar | ||||
| ||||
Kiani, T., Mehboob, F., Hyder, M. Z., Zainy, Z., Xu, L., Huang, L., & Farrakh, S. (2021). Control of stripe rust of wheat using indigenous endophytic bacteria at seedling and adult plant stage. Scientific Reports, 11(1), 14473. doi:10.1038/s41598-021-93939-6 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Kim, T. U., Cho, S. H., Han, J. H., Shin, Y. M., Lee, H. B., & Kim, S. B. (2012). Diversity and physiological properties of root endophytic actinobacteria in native herbaceous plants of Korea. The Journal of Microbiology, 50(1), 50-57. doi:10.1007/s12275-012-1417-x Crossref ● PubMed ● Google Scholar | ||||
| ||||
Kopylov, E. P., Mamchur, O. E., & Strekalov, V. M. (2009). Nitrogen-fixing bacteria of Azospirillum genus as spring wheat plants endophytes. Scientific Bulletin of the Uzhhorod University. Series Biology, 25, 13-18. (In Ukrainian) Google Scholar | ||||
| ||||
Kushwaha, P., Kashyap, P. L., Bhardwaj, A. K., Kuppusamy, P., Srivastava, A. K., & Tiwari, R. K. (2020). Bacterial endophyte mediated plant tolerance to salinity: growth responses and mechanisms of action. World Journal of Microbiology and Biotechnology, 36(2), 26. doi:10.1007/s11274-020-2804-9 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Kuźniar, A., Włodarczyk, K., Grządziel, J., Woźniak, M., Furtak, K., Gałązka, A., Dziadczyk, E., Skórzyńska-Polit, E., & Wolińska, A. (2020). New insight into the composition of wheat seed microbiota. International Journal of Molecular Sciences, 21(13), 4634. doi:10.3390/ijms21134634 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Kuźniar, A., Włodarczyk, K., Sadok, I., Staniszewska, M., Woźniak, M., Furtak, K., Grządziel, J., Gałązka, A., Skórzyńska-Polit, E., & Wolińska, A. (2021). A comprehensive analysis using colorimetry, liquid chromatography-tandem mass spectrometry and bioassays for the assessment of indole related compounds produced by endophytes of selected wheat cultivars. Molecules, 26(5), 1394. doi:10.3390/molecules26051394 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Langridge, P., & Reynolds, M. (2021). Breeding for drought and heat tolerance in wheat. Theoretical and Applied Genetics, 134(6), 1753-1769. doi:10.1007/s00122-021-03795-1 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Le Cocq, K., Gurr, S. J., Hirsch, P. R., & Mauchline, T. H. (2017). Exploitation of endophytes for sustainable agricultural intensification. Molecular Plant Pathology, 18(3), 469-473. doi:10.1111/mpp.12483 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Li, X., Sun, P., Zhang, Y., Jin, C., & Guan, C. (2020). A novel PGPR strain Kocuria rhizophila Y1 enhances salt stress tolerance in maize by regulating phytohormone levels, nutrient acquisition, redox potential, ion homeostasis, photosynthetic capacity and stress-responsive genes expression. Environmental and Experimental Botany, 174, 104023. doi:10.1016/j.envexpbot.2020.104023 Crossref ● Google Scholar | ||||
| ||||
Links, M. G., Demeke, T., Gräfenhan, T., Hill, J. E., Hemmingsen, S. M., & Dumonceaux, T. J. (2014). Simultaneous profiling of seed-associated bacteria and fungi reveals antagonistic interactions between microorganisms within a shared epiphytic microbiome on Triticum and Brassica seeds. New Phytologist, 202(2), 542-553. doi:10.1111/nph.12693 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Liu, P., & Nester, E. W. (2006). Indoleacetic acid, a product of transferred DNA, inhibits vir gene expression and growth of Agrobacterium tumefaciens C58. Proceedings of the National Academy of Sciences, 103(12), 4658-4662. doi:10.1073/pnas.0600366103 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Liu, H., Carvalhais, L. C., Crawford, M., Singh, E., Dennis, P. G., Pieterse, C. M. J., & Schenk, P. M. (2017). Inner plant values: diversity, colonization and benefits from endophytic bacteria. Frontiers in Microbiology, 8, 2552. doi:10.3389/fmicb.2017.02552 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Lomolino, G., Morari, F., Dal Ferro, N., Vincenzi, S., & Pasini, G. (2017). Investigating the einkorn (Triticum monococcum) and common wheat (Triticum aestivum) bread crumb structure with X-ray microtomography: effects on rheological and sensory properties. International Journal of Food Science & Technology, 52(6), 1498-1507. doi:10.1111/ijfs.13425 Crossref ● Google Scholar | ||||
| ||||
Lowe, N. M. (2021). The global challenge of hidden hunger: perspectives from the field. Proceedings of the Nutrition Society, 80(3), 283-289. doi:10.1017/S0029665121000902 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Lu, H., Wei, T., Lou, H., Shu, X., & Chen, Q. (2021). A critical review on communication mechanism within plant-endophytic fungi interactions to cope with biotic and abiotic stresses. Journal of Fungi, 7(9), 719. doi:10.3390/jof7090719 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Luo, Y., Wang, F., Huang, Y., Zhou, M., Gao, J., Yan, T., Sheng, H., & An, L. (2019). Sphingomonas sp. Cra20 increases plant growth rate and alters rhizosphere microbial community structure of Arabidopsis thaliana under drought stress. Frontiers in Microbiology, 10, 1221. doi:10.3389/fmicb.2019.01221 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Lyu, D., Zajonc, J., Pagé, A., Tanney, C. A. S., Shah, A., Monjezi, N., Msimbira, L. A., Antar, M., Nazari, M., Backer, R., & Smith, D. L. (2021). Plant holobiont theory: the phytomicrobiome plays a central role in evolution and success. Microorganisms, 9(4), 675. doi:10.3390/microorganisms9040675 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Makar, O., Kuźniar, A., Patsula, O., Kavulych, Y., Kozlovskyy, V., Wolińska, A., Skórzyńska-Polit, E., Vatamaniuk, O., Terek, O., & Romanyuk, N. (2021). Bacterial endophytes of spring wheat grains and the potential to acquire Fe, Cu, and Zn under their low soil bioavailability. Biology, 10(5), 409. doi:10.3390/biology10050409 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Marín, F., Santos, M., Carretero, F., Yau, J. A., & Diánez, F. (2011). Erwinia aphidicola isolated from commercial bean seeds (Phaseolus vulgaris). Phytoparasitica, 39(5), 483-489. doi:10.1007/s12600-011-0190-4 Crossref ● Google Scholar | ||||
| ||||
Matthijs, S., Tehrani, K. A., Laus, G., Jackson, R. W., Cooper, R. M., & Cornelis, P. (2007). Thioquinolobactin, a Pseudomonas siderophore with antifungal and anti-Pythium activity. Environmental Microbiology, 9(2), 425-434. doi:10.1111/j.1462-2920.2006.01154.x Crossref ● PubMed ● Google Scholar | ||||
| ||||
Melash, A. A., & Mengistu, D. K. (2020). Improving grain micronutrient content of durum wheat (Triticum turgidum var. durum) through agronomic biofortification to alleviate the hidden hunger. Advances in Agriculture, 1-6. doi:10.1155/2020/7825413 Crossref ● Google Scholar | ||||
| ||||
Mengistu, A. A. (2020). Endophytes: colonization, behaviour, and their role in defense mechanism. International Journal of Microbiology, 2020, 6927219. doi:10.1155/2020/6927219 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Minervini, F., Lattanzi, A., Dinardo, F. R., De Angelis, M., & Gobbetti, M. (2017). Wheat endophytic lactobacilli drive the microbial and biochemical features of sourdoughs. Food Microbiology, 70, 162-171. doi:10.1016/j.fm.2017.09.006 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Ntushelo, K., Ledwaba, L. K., Rauwane, M. E., Adebo, O. A., & Njobeh, P. B. (2019). The mode of action of Bacillus species against Fusarium graminearum, tools for investigation, and future prospects. Toxins, 11(10), 606. doi:10.3390/toxins11100606 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Olsen, L. I., & Palmgren, M. G. (2014). Many rivers to cross: the journey of zinc from soil to seed. Frontiers in Plant Science, 5, 30. doi:10.3389/fpls.2014.00030 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Özkurt, E., Hassani, M. A., Sesiz, U., Künzel, S., Dagan, T., Özkan, H., & Stukenbrock, E. H. (2020). Seed-derived microbial colonization of wild emmer and domesticated bread wheat (Triticum dicoccoides and T. aestivum) seedlings shows pronounced differences in overall diversity and composition. MBio, 11(6), e02637-20. doi:10.1128/mBio.02637-20 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Pan, D., Mionetto, A., Tiscornia, S., & Bettucci, L. (2015). Endophytic bacteria from wheat grain as biocontrol agents of Fusarium graminearum and deoxynivalenol production in wheat. Mycotoxin Research, 31(3), 137-143. doi:10.1007/s12550-015-0224-8 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Pang, F., Tao, A., Ayra-Pardo, C., Wang, T., Yu, Z., & Huang, S. (2022). Plant organ- and growth stage-diversity of endophytic bacteria with potential as biofertilisers isolated from wheat (Triticum aestivum L.). BMC Plant Biology, 22(1), 276. doi:10.1186/s12870-022-03615-8 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Pasychnyk, L., Gvozdyak, R., & Khodos, S. (2005). Epifitna ta endofitna mikroflora zdorovoho zerna ta vehetuiuchykh roslyn pshenytsi [Epiphytic and endophytic microflora of healthy grain and vegetating wheat plants]. Visnyk DAU, 2(15), 141-148. Retrieved from http://ir.znau.edu.ua/bitstream/123456789/7066/1/DAU_2005_2_15_141-148.pdf (In Ukrainian) Google Scholar | ||||
| ||||
Pastoshchuk, A., Shustyk, D., Zelena, P., Yumyna, Yu., & Skivka, L. (2022). Antimicrobial activity of exometabolites of Paenibacillus polymyxa, isolated from endophytic community of winter wheat grain. Naukovì Dopovìdì Nacìonal'nogo Unìversitetu Bìoresursiv ì Prirodokoristuvannâ Ukraïni, 1(95). doi.org/10.31548/dopovidi2022.01.005 (In Ukrainian) Crossref | ||||
| ||||
Patel, J. K., Gohel, K., Patel, H., & Solanki, T. (2021). Wheat growth dependent succession of culturable endophytic bacteria and their plant growth promoting traits. Current Microbiology, 78(12), 4103-4114. doi:10.1007/s00284-021-02668-6 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Peiffer, J. A., Spor, A., Koren, O., Jin, Z., Tringe, S. G., Dangl, J. L., Buckler, E. S., & Ley, R. E. (2013). Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proceedings of the National Academy of Sciences, 110(16), 6548-6553. doi:10.1073/pnas.1302837110 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Penrose, D. M., Moffatt, B. A., & Glick, B. R. (2001). Determination of 1-aminocycopropane-1-carboxylic acid (ACC) to assess the effects of ACC deaminase-containing bacteria on roots of canola seedlings. Canadian Journal of Microbiology, 47(1), 77-80. doi:10.1139/w00-128 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Petrini, O. (1996). Ecological and physiological aspects of host specificity in endophytic fungi (pp. 87-100). In: S. C. Redlin & L. M. Carris (Eds). Endophytic fungi in grasses and woody plants. St. Paul: APS Press. Google Scholar | ||||
| ||||
Qi, Y., Wang, S., Shen, C., Zhang, S., Chen, Y., Xu, Y., Liu, Y., Wu, Y., & Jiang, D. (2012). OsARF12, a transcription activator on auxin response gene, regulates root elongation and affects iron accumulation in rice (Oryza sativa). New Phytologist, 193(1), 109-120. doi:10.1111/j.1469-8137.2011.03910.x Crossref ● PubMed ● Google Scholar | ||||
| ||||
Ramesh, A., Sharma, S. K., Sharma, M. P., Yadav, N., & Joshi, O. P. (2014). Inoculation of zinc solubilizing Bacillus aryabhattai strains for improved growth, mobilization and biofortification of zinc in soybean and wheat cultivated in Vertisols of central India. Applied Soil Ecology, 73, 87-96. doi:10.1016/j.apsoil.2013.08.009 Crossref ● Google Scholar | ||||
| ||||
Ramzan, Y., Hafeez, M. B., Khan, S., Nadeem, M., Saleem-ur-Rahman, Batool, S., & Ahmad, J. (2020). Biofortification with zinc and iron improves the grain quality and yield of wheat crop. International Journal of Plant Production, 14(3), 501-510. doi:10.1007/s42106-020-00100-w Crossref ● Google Scholar | ||||
| ||||
Rana, A., Joshi, M., Prasanna, R., Shivay, Y. S., & Nain, L. (2012). Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. European Journal of Soil Biology, 50, 118-126. doi:10.1016/j.ejsobi.2012.01.005 Crossref ● Google Scholar | ||||
| ||||
Rana, K. L., Kour, D., Kaur, T., Sheikh, I., Yadav, A. N., Kumar, V., Suman, A., & Dhaliwal, H. S. (2020). Endophytic microbes from diverse wheat genotypes and their potential biotechnological applications in plant growth promotion and nutrient uptake. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 90(5), 969-979. doi:10.1007/s40011-020-01168-0 Crossref ● Google Scholar | ||||
| ||||
Razzaghi Komaresofla, B., Alikhani, H. A., & Etesami, H. (2020). Effect of Staphylococcus sp. bacteria isolated from Salicornia plant on wheat growth. Journal of Water and Soil Conservation, 26(6), 179-196. doi:10.22069/JWSC.2019.16079.3133 Crossref ● Google Scholar | ||||
| ||||
Rehman, A., Farooq, M., Naveed, M., Nawaz, A., & Shahzad, B. (2018). Seed priming of Zn with endophytic bacteria improves the productivity and grain biofortification of bread wheat. European Journal of Agronomy, 94, 98-107. doi:10.1016/j.eja.2018.01.017 Crossref ● Google Scholar | ||||
| ||||
Remus, R., Ruppel, S., Jacob, H.-J., Hecht-Buchholz, C., & Merbach, W. (2000). Colonization behaviour of two enterobacterial strains on cereals. Biology and Fertility of Soils, 30(5-6), 550-557. doi:10.1007/s003740050035 Crossref ● Google Scholar | ||||
| ||||
Ribeiro, I. D. A., Volpiano, C. G., Vargas, L. K., Granada, C. E., Lisboa, B. B., & Passaglia, L. M. P. (2020). Use of mineral weathering bacteria to enhance nutrient availability in crops: a review. Frontiers in Plant Science, 11, 590774. https://doi.org/10.3389/fpls.2020.590774 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Ridout, M. E., Schroeder, K. L., Hunter, S. S., Styer, J., & Newcombe, G. (2019). Priority effects of wheat seed endophytes on a rhizosphere symbiosis. Symbiosis, 78(1), 19-31. doi:10.1007/s13199-019-00606-6 Crossref ● Google Scholar | ||||
| ||||
Rijavec, T., Lapanje, A., Dermastia, M., & Rupnik, M. (2007). Isolation of bacterial endophytes from germinated maize kernels. Canadian Journal of Microbiology, 53(6), 802-808. doi:10.1139/W07-048 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Robinson, R. J., Fraaije, B. A., Clark, I. M., Jackson, R. W., Hirsch, P. R., & Mauchline, T. H. (2016). Endophytic bacterial community composition in wheat (Triticum aestivum) is determined by plant tissue type, developmental stage and soil nutrient availability. Plant and Soil, 405(1-2), 381-396. doi:10.1007/s11104-015-2495-4 Crossref ● Google Scholar | ||||
| ||||
Rodriguez, R., & Redman, R. (2008). More than 400 million years of evolution and some plants still can't make it on their own: plant stress tolerance via fungal symbiosis. Journal of Experimental Botany, 59(5), 1109-1114. doi:10.1093/jxb/erm342 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Román-Ponce, B., Ramos-Garza, J., Vásquez-Murrieta, M. S., Rivera-Orduña, F. N., Chen, W. F., Yan, J., Estrada-de los Santos, P., & Wang, E. T. (2016). Cultivable endophytic bacteria from heavy metal(loid)-tolerant plants. Archives of Microbiology, 198(10), 941-956. doi:10.1007/s00203-016-1252-2 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Rusakova, M. Yu., Galkin, B. M., Filipova, Т. О., Ivah, V. V., & Titlianov, O. O. (2014). The siderophore production by Pseudomonas bacteria. Microbiology and Biotechnology, 4, 88-95. doi:10.18524/2307-4663.2014.4(28).48430 (In Ukrainian) Crossref ● Google Scholar | ||||
| ||||
Sabaté, D. C., Brandan, C. P., Petroselli, G., Erra-Balsells, R., & Audisio, M. C. (2018). Biocontrol of Sclerotinia sclerotiorum (Lib.) de Bary on common bean by native lipopeptide-producer Bacillus strains. Microbiological Research, 211, 21-30. doi:10.1016/j.micres.2018.04.003 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Sagar, A., Thomas, G., Rai, S., Mishra, R. K., & Ramteke, P. W. (2018). Enhancement of growth and yield parameters of wheat variety AAI-W6 by an organic farm isolate of plant growth promoting erwinia species (KP226572). International Journal of Agriculture, Environment and Biotechnology, 11(1), 159-171. Google Scholar | ||||
| ||||
Saini, D. K., Devi, P., & Kaushik, P. (2020). Advances in genomic interventions for wheat biofortification: a review. Agronomy, 10(1), 62. doi:10.3390/agronomy10010062 Crossref ● Google Scholar | ||||
| ||||
Saldierna Guzmán, J. P., Reyes-Prieto, M., & Hart, S. C. (2021). Characterization of Erwinia gerundensis A4, an almond-derived plant growth-promoting endophyte. Frontiers in Microbiology, 12, 687971. doi:10.3389/fmicb.2021.687971 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Santos, M. L. dos, Berlitz, D. L., Wiest, S. L. F., Schünemann, R., Knaak, N., & Fiuza, L. M. (2018). Benefits associated with the interaction of endophytic bacteria and plants. Brazilian Archives of Biology and Technology, 61(0), e18160431. doi:10.1590/1678-4324-2018160431 Crossref ● Google Scholar | ||||
| ||||
Santoyo, G., Moreno-Hagelsieb, G., del Carmen Orozco-Mosqueda, Ma., & Glick, B. R. (2016). Plant growth-promoting bacterial endophytes. Microbiological Research, 183, 92-99. doi:10.1016/j.micres.2015.11.008 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Shah, D., Khan, M. S., Aziz, S., Ali, H., & Pecoraro, L. (2021). Molecular and biochemical characterization, antimicrobial activity, stress tolerance, and plant growth-promoting effect of endophytic bacteria isolated from wheat varieties. Microorganisms, 10(1), 21. doi:10.3390/microorganisms10010021 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Shahzad, R., Khan, A. L., Bilal, S., Asaf, S., & Lee, I.-J. (2018). What is there in seeds? Vertically transmitted endophytic resources for sustainable improvement in plant growth. Frontiers in Plant Science, 9, 24. doi:10.3389/fpls.2018.00024 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Sharma, S. K., Sharma, M. P., Ramesh, A., & Joshi, O. P. (2012). Characterization of zinc-solubilizing Bacillus isolates and their potential to influence zinc assimilation in soybean seeds. Journal of Microbiology and Biotechnology, 22(3), 352-359. doi:10.4014/jmb.1106.05063 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Singh, D., & Prasanna, R. (2020). Potential of microbes in the biofortification of Zn and Fe in dietary food grains. A review. Agronomy for Sustainable Development, 40(2), 15. doi:10.1007/s13593-020-00619-2 Crossref ● Google Scholar | ||||
| ||||
Singh, D., Geat, N., Rajawat, M. V. S., Prasanna, R., & Saxena, A. K. (2020). Performance of low and high Fe accumulator wheat genotypes grown on soils with low or high available Fe and endophyte inoculation. Acta Physiologiae Plantarum, 42(2), 24. doi:10.1007/s11738-019-2997-4 Crossref ● Google Scholar | ||||
| ||||
Singh, D., Geat, N., Rajawat, M. V. S., Prasanna, R., Kar, A., Singh, A. M., & Saxena, A. K. (2018). Prospecting endophytes from different Fe or Zn accumulating wheat genotypes for their influence as inoculants on plant growth, yield, and micronutrient content. Annals of Microbiology, 68(12), 815-833. doi:10.1007/s13213-018-1388-1 Crossref ● Google Scholar | ||||
| ||||
Singh, D., Rajawat, M. V. S., Kaushik, R., Prasanna, R., & Saxena, A. K. (2017). Beneficial role of endophytes in biofortification of Zn in wheat genotypes varying in nutrient use efficiency grown in soils sufficient and deficient in Zn. Plant and Soil, 416(1-2), 107-116. doi:10.1007/s11104-017-3189-x Crossref ● Google Scholar | ||||
| ||||
Solanki, M. K., Abdelfattah, A., Britzi, M., Zakin, V., Wisniewski, M., Droby, S., & Sionov, E. (2019). Shifts in the composition of the microbiota of stored wheat grains in response to fumigation. Frontiers in Microbiology, 10, 1098. doi:10.3389/fmicb.2019.01098 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Soluch, R., Hülter, N. F., Romero Picazo, D., Özkurt, E., Stukenbrock, E. H., & Dagan, T. (2021). Colonization dynamics of Pantoea agglomerans in the wheat root habitat. Environmental Microbiology, 23(4), 2260-2273. doi:10.1111/1462-2920.15430 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Spaepen, S., Vanderleyden, J., & Remans, R. (2007). Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiology Reviews, 31(4), 425-448. doi:10.1111/j.1574-6976.2007.00072.x Crossref ● PubMed ● Google Scholar | ||||
| ||||
Suhandono, S., Kusumawardhani, M. K., & Aditiawati, P. (2016). Isolation and molecular identification of endophytic bacteria from Rambutan fruits (Nephelium lappaceum L.) cultivar Binjai. HAYATI Journal of Biosciences, 23(1), 39-44. doi:10.1016/j.hjb.2016.01.005 Crossref ● Google Scholar | ||||
| ||||
Sun, Z., Liu, K., Zhang, J., Zhang, Y., Xu, K., Yu, D., Wang, J., Hu, L., Chen, L., & Li, C. (2017). IAA producing Bacillus altitudinis alleviates iron stress in Triticum aestivum L. seedling by both bioleaching of iron and up-regulation of genes encoding ferritins. Plant and Soil, 419(1-2), 1-11. doi:10.1007/s11104-017-3218-9 Crossref ● Google Scholar | ||||
| ||||
Sun, Z., Yue, Z., Liu, H., Ma, K., & Li, C. (2021). Microbial-assisted wheat iron biofortification using endophytic Bacillus altitudinis WR10. Frontiers in Nutrition, 8, 704030. doi:10.3389/fnut.2021.704030 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Tabei, H., Azegami, K., & Fukuda, T. (1988). Infection site of rice grain with Erwinia herbicola, the causal agent of bacterial palea browning of rice. Japanese Journal of Phytopathology, 54(5), 637-639. doi:10.3186/jjphytopath.54.637 Crossref ● Google Scholar | ||||
| ||||
Tan, R. X., & Zou, W. X. (2001). Endophytes: a rich source of functional metabolites. Natural Product Reports, 18(4), 448-459. doi:10.1039/b100918o Crossref ● PubMed ● Google Scholar | ||||
| ||||
Tao, A., Pang, F., Huang, S., Yu, G., Li, B., & Wang, T. (2014). Characterisation of endophytic Bacillus thuringiensis strains isolated from wheat plants as biocontrol agents against wheat flag smut. Biocontrol Science and Technology, 24(8), 901-924. doi:10.1080/09583157.2014.904502 Crossref ● Google Scholar | ||||
| ||||
Thompson, B. (2020). Isolation and characterization of bacterial endophytes for growth promotion of Phaseolus vulgaris under salinity stress. University of the Western Cape, Cape Town, South Africa. Google Scholar | ||||
| ||||
Tripathi, S., Bahuguna, R. N., Shrivastava, N., Singh, S., Chatterjee, A., Varma, A., & Jagadish, S. K. (2022). Microbial biofortification: a sustainable route to grow nutrient-rich crops under changing climate. Field Crops Research, 287, 108662. doi:10.1016/j.fcr.2022.108662 Crossref ● Google Scholar | ||||
| ||||
Truyens, S., Weyens, N., Cuypers, A., & Vangronsveld, J. (2015). Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environmental Microbiology Reports, 7(1), 40-50. doi:10.1111/1758-2229.12181 Crossref ● Google Scholar | ||||
| ||||
Ullah, H., Yasmin, H., Mumtaz, S., Jabeen, Z., Naz, R., Nosheen, A., & Hassan, M. N. (2020). Multitrait Pseudomonas spp. isolated from monocropped wheat (Triticum aestivum) suppress Fusarium root and grown rot. Phytopathology, 110(3), 582-592. doi:10.1094/phyto-10-19-0383-r Crossref ● PubMed ● Google Scholar | ||||
| ||||
United Nations (UN). (2015). World population prospects: the 2015 revision. Retrieved from https://population.un.org/wpp/Publications/Files/Key_Findings_WPP_2015.pdf Google Scholar | ||||
| ||||
Van Der Straeten, D., Fitzpatrick, T. B., & De Steur, H. (2017). Editorial overview: biofortification of crops: achievements, future challenges, socio-economic, health and ethical aspects. Current Opinion in Biotechnology, 44, vii-x. doi:10.1016/j.copbio.2017.03.007 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Van Overbeek, L. S., & Saikkonen, K. (2016). Impact of bacterial-fungal interactions on the colonization of the endosphere. Trends in Plant Science, 21(3), 230-242. doi:10.1016/j.tplants.2016.01.003 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Vasconcelos, M. W., Gruissem, W., & Bhullar, N. K. (2017). Iron biofortification in the 21st century: setting realistic targets, overcoming obstacles, and new strategies for healthy nutrition. Current Opinion in Biotechnology, 44, 8-15. doi:10.1016/j.copbio.2016.10.001 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Verma, P., Yadav, A. N., Kazy, S. K., Saxena, A .K., & Suman, A. (2014). Evaluating the diversity and phylogeny of plant growth promoting bacteria associated with wheat (Triticum aestivum) growing in central zone of India. International Journal Current Microbiology and Applied Science, 3, 432-447. Google Scholar | ||||
| ||||
Verma, P., Yadav, A. N., Khannam, K. S., Panjiar, N., Kumar, S., Saxena, A. K., & Suman, A. (2015). Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Annals of Microbiology, 65(4), 1885-1899. doi:10.1007/s13213-014-1027-4 Crossref ● Google Scholar | ||||
| ||||
Verma, S. K., Sahu, P. K., Kumar, K., Pal, G., Gond, S. K., Kharwar, R. N., & White, J. F. (2021). Endophyte roles in nutrient acquisition, root system architecture development and oxidative stress tolerance. Journal of Applied Microbiology, 131(5), 2161-2177. doi:10.1111/jam.15111 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Wanees, A. E., Zaslow, S. J., Potter, S. J., Hsieh, B. P., Boss, B. L., & Izquierdo, J. A. (2018). Draft genome sequence of the plant growth-promoting Sphingobium sp. strain AEW4, isolated from the rhizosphere of the beachgrass Ammophila breviligulata. Genome Announcements, 6(21), e00410-18. doi:10.1128/genomeA.00410-18 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Wendel, S. O., Menon, S., Alshetaiwi, H., Shrestha, T. B., Chlebanowski, L., Hsu, W.-W., Bossmann, S. H., Narayanan, S., & Troyer, D. L. (2015). Cell based drug delivery: Micrococcus luteus loaded neutrophils as chlorhexidine delivery vehicles in a mouse model of liver abscesses in cattle. PLoS One, 10(5), e0128144. doi:10.1371/journal.pone.0128144 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Weyens, N., Beckers, B., Schellingen, K., Ceulemans, R., Croes, S., Janssen, J., Haenen, S., Witters, N., & Vangronsveld, J. (2013). Plant-associated bacteria and their role in the success or failure of metal phytoextraction projects: first observations of a field-related experiment. Microbial Biotechnology, 6(3), 288-299. doi:10.1111/1751-7915.12038 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
White, J. F., Kingsley, K. L., Zhang, Q., Verma, R., Obi, N., Dvinskikh, S., Elmore, M. T., Verma, S. K., Gond, S. K., & Kowalski, K. P. (2019). Endophytic microbes and their potential applications in crop management. Pest Management Science, 75(10), 2558-2565. doi:10.1002/ps.5527 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
White, P. J., & Broadley, M. R. (2009). Biofortification of crops with seven mineral elements often lacking in human diets - iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytologist, 182(1), 49-84. doi:10.1111/j.1469-8137.2008.02738.x Crossref ● PubMed ● Google Scholar | ||||
| ||||
White, P., Pongrac, P., Sneddon, C., Thompson, J., & Wright, G. (2018). Limits to the biofortification of leafy brassicas with zinc. Agriculture, 8(3), 32. doi:10.3390/agriculture8030032 Crossref ● Google Scholar | ||||
| ||||
Witzel, K., Gwinn-Giglio, M., Nadendla, S., Shefchek, K., & Ruppel, S. (2012). Genome sequence of Enterobacter radicincitans DSM16656T , a plant growth-promoting endophyte. Journal of Bacteriology, 194(19), 5469-5469. doi:10.1128/JB.01193-12 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Woźniak, M., Gałązka, A., Tyśkiewicz, R., & Jaroszuk-Ściseł, J. (2019). Endophytic bacteria potentially promote plant growth by synthesizing different metabolites and their phenotypic/physiological profiles in the Biolog GEN III MicroPlateTM test. International Journal of Molecular Sciences, 20(21), 5283. doi:10.3390/ijms20215283 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Xu, J., Kloepper, J. W., Huang, P., McInroy, J. A., & Hu, C. H. (2018). Isolation and characterization of N2-fixing bacteria from giant reed and switchgrass for plant growth promotion and nutrient uptake. Journal of Basic Microbiology, 58(5), 459-471. doi:10.1002/jobm.201700535 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Xu, Y., Zhang, S., Guo, H., Wang, S., Xu, L., Li, C., Qian, Q., Chen, F., Geisler, M., Qi, Y., & Jiang, D. A. (2014). OsABCB14 functions in auxin transport and iron homeostasis in rice (Oryza sativa L.). The Plant Journal, 79(1), 106-117. doi:10.1111/tpj.12544 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Yaseen, M., Abbas, T., Aziz, M. Z., Wakeel, A., Yasmeen, H., Ahmed, W., Ullah, A., Naveed, M. (2018). Microbial assisted foliar feeding of micronutrients enhance growth, yield and biofortification of wheat. International Journal of Agriculture and Biology, 353-360. doi:10.17957/ijab/15.0498 Crossref ● Google Scholar | ||||
| ||||
Young, C. C., Arun, A. B., Kämpfer, P., Busse, H. J., Lai, W. A., Chen, W. M., Shen, F. T., & Rekha, P. D. (2008). Sphingobium rhizovicinum sp. nov., isolated from rhizosphere soil of Fortunella hindsii (Champ. ex Benth.) Swingle. International Journal of Systematic and Evolutionary Microbiology, 58(8), 1801-1806. doi:10.1099/ijs.0.65564-0 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Yu, R.-Q., Kurt, Z., He, F., & Spain, J. C. (2019). Biodegradation of the allelopathic chemical pterostilbene by a Sphingobium sp. strain from the peanut rhizosphere. Applied and Environmental Microbiology, 85(5), e02154-18. doi:10.1128/AEM.02154-18 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Yue, Z., Shen, Y., Chen, Y., Liang, A., Chu, C., Chen, C., & Sun, Z. (2019). Microbiological insights into the stress-alleviating property of an endophytic Bacillus altitudinis WR10 in wheat under low-phosphorus and high-salinity stresses. Microorganisms, 7(11), 508. doi:10.3390/microorganisms7110508 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Zhang, P., Zhu, Y., Ma, D., Xu, W., Zhou, J., Yan, H., Yang, L., & Yin, J. (2019). Screening, identification, and optimization of fermentation conditions of an antagonistic endophyte to wheat head blight. Agronomy, 9(9), 476. doi:10.3390/agronomy9090476 Crossref ● Google Scholar | ||||
| ||||
Žiarovská, J., Medo, J., Kyseľ, M., Zamiešková, L., & Kačániová, M. (2020). Endophytic bacterial microbiome diversity in early developmental stage plant tissues of wheat varieties. Plants, 9(2), 266. doi:10.3390/plants9020266 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Zou, C., Du, Y., Rashid, A., Ram, H., Savasli, E., Pieterse, P. J., Ortiz-Monasterio, I., Yazici, A., Kaur, C., Mahmood, K., Singh, S., Le Roux, M. R., Kuang, W., Onder, O., Kalayci, M., & Cakmak, I. (2019). Simultaneous biofortification of wheat with zinc, iodine, selenium, and iron through foliar treatment of a micronutrient cocktail in six countries. Journal of Agricultural and Food Chemistry, 67(29), 8096-8106. doi:10.1021/acs.jafc.9b01829 Crossref ● PubMed ● Google Scholar |
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 O. O. Makar, N. D. Romanyuk
This work is licensed under a Creative Commons Attribution 4.0 International License.