SPERMIDINE ACTIVATES AUTHOPHAGY BUT DOES NOT RESCUE HUMAN NEUROBLASTOMA SH-SY5Y CELLS FROM EFFECTS OF ARGININE STARVATION
DOI: http://dx.doi.org/10.30970/sbi.1603.691
Abstract
Background. Neuroblastoma is a malignant tumor of the sympathetic nervous system common in early childhood. Autophagy is manifested in neuroblastoma cells at basal levels, but is often upregulated in cells of the aggressive neuroblastoma forms. The aim of the study was to evaluate effects of polyamine spermidine and deficiency of arginine on cell viability and autophagy regulation in cells of human neuroblastoma.
Materials and Methods. The human neuroblastoma SH-SY5Y cell line was an experimental model for the MTT assay of metabolic activity and cell viability upon exposure to different concentrations of spermidine in complete and arginine-free media. Assessing autophagy induction under arginine deficiency and spermidine treatment was carried out using fluorescence microscopy of neuroblastoma cells labeled with autophagic lysosomes-staining dye monodancylcadaverine.
Results and Discussion. It was found that arginine withdrawal abrogates proliferation of SH-SY5Y cells. In the presence of arginine precursor, citrulline, in arginine-free medium, SH-SY5Y cells could not proliferate and, therefore, are auxotrophic for arginine. SH-SY5Y cells were more sensitive to arginine starvation than to starvation for indispensible amino acids lysine or leucine. It was also revealed that spermidine at low concentrations of 5-10 μM did not affect SH-SY5Y cells viability irrespective of arginine availability. However, at 50 and higher concentrations this polyamine was highly cytotoxic in arginine-sufficient or deficient media. Analysis of autophagy induction by spermidine and under arginine starvation revealed an increase in the number of autophagic lysosomes in SH-SY5Y cells and additive effect of the two stimuli.
Conclusion. The described experiments revealed that arginine deprivation abrogated proliferation, led to a decrease in cell viability and induced autophagy in human neuroblastoma SH-SY5Y cells. Spermidine at the concentrations of 5-10 μM, while upinducing autophagy, did not improve survival of SH-SY5Y cells under arginine deprivation, whereas at a concentration above 50 μM spermidine had a strong cytotoxic effect. The main observation of this study is that autophagy can be readily manipulated in neuroblastoma cells by simultaneous deprivation for arginine and spermidine treatment.
Keywords
Full Text:
PDFReferences
Belounis, A., Nyalendo, C., Le Gall, R., Imbriglio, T. V., Mahma, M., Teira, P., Beaunoyer, M., Cournoyer, S., Haddad, E., Vassal, G., & Sartelet, H. (2016). Autophagy is associated with chemoresistance in neuroblastoma. BMC Cancer, 16(1). doi:10.1186/s12885-016-2906-9 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Boya, P., González-Polo, R.-A., Casares, N., Perfettini, J.-L., Dessen, P., Larochette, N., Métivier, D., Meley, D., Souquere, S., Yoshimori, T., Pierron, G., Codogno, P., & Kroemer, G. (2005). Inhibition of macroautophagy triggers apoptosis. Molecular and Cellular Biology, 25(3), 1025-1040. doi:10.1128/mcb.25.3.1025-1040.2005 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Chrisam, M., Pirozzi, M., Castagnaro, S., Blaauw, B., Polishchuck, R., Cecconi, F., Grumati, P., & Bonaldo, P. (2015). Reactivation of autophagy by spermidine ameliorates the myopathic defects of collagen VI-null mice. Autophagy, 11(12), 2142-2152. doi:10.1080/15548627.2015.1108508 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
du Toit, A., De Wet, S., Hofmeyr, J.-H., Müller-Nedebock, K., & Loos, B. (2018). The precision control of autophagic flux and vesicle dynamics - a micropattern approach. Cells, 7(8), 94. doi:10.3390/cells7080094 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Eisenberg, T., Knauer, H., Schauer, A., Büttner, S., Ruckenstuhl, C., Carmona-Gutierrez, D., Ring, J., Schroeder, S., Magnes, C., Antonacci, L., Fussi, H., Deszcz, L., Hartl, R., Schraml, E., Criollo, A., Megalou, E., Weiskopf, D., Laun, P., Heeren, G., … Madeo, F. (2009). Induction of autophagy by spermidine promotes longevity. Nature Cell Biology, 11(11), 1305-1314. doi:10.1038/ncb1975 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Evageliou, N. F., & Hogarty, M. D. (2009). Disrupting polyamine homeostasis as a therapeutic strategy for neuroblastoma. Clinical Cancer Research, 15(19), 5956-5961. doi:10.1158/1078-0432.CCR-08-3213 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Fazi, B., Bursch, W., Fimia, G. M., Nardacci, R., Piacentini, M., Di Sano, F., & Piredda, L. (2008). Fenretinide induces autophagic cell death in caspase-defective breast cancer cells. Autophagy, 4(4), 435-441. doi:10.4161/auto.5669 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Ghosh, I., Sankhe, R., Mudgal, J., Arora, D., & Nampoothiri, M. (2020). Spermidine, an autophagy inducer, as a therapeutic strategy in neurological disorders. Neuropeptides, 83, 102083. doi:10.1016/j.npep.2020.102083 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Huang, Y., Marton, L. J., Woster, P. M., & Casero, R. A. (2009). Polyamine analogues targeting epigenetic gene regulation. Essays in Biochemistry, 46, 95-110. doi:10.1042/bse0460007 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Huang, S., & Gu, S. (2020). Targeting autophagy in neuroblastoma. World Journal of Pediatric Surgery, 3(3), e000121. doi:10.1136/wjps-2020-000121 Crossref ● Google Scholar | ||||
| ||||
Klionsky, D. J., Abdalla, F. C., Abeliovich, H., Abraham, R. T., Acevedo-Arozena, A., Adeli, K., Agholme, L., Agnello, M., Agostinis, P., Aguirre-Ghiso, J. A., Ahn, H. J., Ait-Mohamed, O., Ait-Si-Ali, S., Akematsu, T., Akira, S., Al-Younes, H. M., Al-Zeer, M. A., Albert, M. L., Albin, R. L., … Zuckerbraun, B. (2012). Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 8(4), 445-544. doi:10.4161/auto.19496 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Lee, I. H., & Finkel, T. (2009). Regulation of autophagy by the p300 acetyltransferase. Journal of Biological Chemistry, 284(10), 6322-6328. doi:10.1074/jbc.m807135200 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Luo, S., & Rubinsztein, D. C. (2009). Apoptosis blocks Beclin 1-dependent autophagosome synthesis: an effect rescued by Bcl-xL. Cell Death & Differentiation, 17(2), 268-277. doi:10.1038/cdd.2009.121 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Mariño, G., Pietrocola, F., Eisenberg, T., Kong, Y., Malik, S. A., Andryushkova, A., Schroeder, S., Pendl, T., Harger, A., Niso-Santano, M., Zamzami, N., Scoazec, M., Durand, S., Enot, D. P., Fernández, Á. F., Martins, I., Kepp, O., Senovilla, L., Bauvy, C., … Kroemer, G. (2014). Regulation of autophagy by cytosolic acetyl-coenzyme A. Molecular Cell, 53(5), 710-725. doi:10.1016/j.molcel.2014.01.016 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Mizushima, N., Yoshimori, T., & Levine, B. (2010). Methods in mammalian autophagy research. Cell, 140(3), 313-326. doi:10.1016/j.cell.2010.01.028 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Munafó, D. B., & Colombo, M. I. (2001). A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation. Journal of Cell Science, 114(20), 3619-3629. doi:10.1242/jcs.114.20.3619 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Nakagawara, A., Li, Y., Izumi, H., Muramori, K., Inada, H., & Nishi, M. (2018). Neuroblastoma. Japanese Journal of Clinical Oncology, 48(3), 214-241. doi:10.1093/jjco/hyx176 Crossref ● PubMed | ||||
| ||||
Oral, O., Oz-Arslan, D., Itah, Z., Naghavi, A., Deveci, R., Karacali, S., & Gozuacik, D. (2012). Cleavage of Atg3 protein by caspase-8 regulates autophagy during receptor-activated cell death. Apoptosis, 17(8), 810-820. doi:10.1007/s10495-012-0735-0 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Pavlyk, I., Rzhepetskyy, Y., Jagielski, A. K., Drozak, J., Wasik, A., Pereverzieva, G., Olchowik, M., Kunz-Schugart, L. A., Stasyk, O., & Redowicz, M. J. (2014). Arginine deprivation affects glioblastoma cell adhesion, invasiveness and actin cytoskeleton organization by impairment of β-actin arginylation. Amino Acids, 47(1), 199-212. doi:10.1007/s00726-014-1857-1 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Pietrocola, F., Lachkar, S., Enot, D. P., Niso-Santano, M., Bravo-San Pedro, J. M., Sica, V., Izzo, V., Maiuri, M. C., Madeo, F., Mariño, G., & Kroemer, G. (2014). Spermidine induces autophagy by inhibiting the acetyltransferase EP300. Cell Death & Differentiation, 22(3), 509-516. doi:1038/cdd.2014.215 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Ross, R. A., Spengler, B. A., & Biedler, J. L. (1983). Coordinate morphological and biochemical interconversion of human neuroblastoma cells. Journal of the National Cancer Institute, 71(4), 741-747. PubMed ● Google Scholar | ||||
| ||||
Saiki, S., Sasazawa, Y., Fujimaki, M., Kamagata, K., Kaga, N., Taka, H., Li, Y., Souma, S., Hatano, T., Imamichi, Y., Furuya, N., Mori, A., Oji, Y., Ueno, S., Nojiri, S., Miura, Y., Ueno, T., Funayama, M., Aoki, S., & Hattori, N. (2019). A metabolic profile of polyamines in parkinson disease: A promising biomarker. Annals of Neurology, 86(2), 251-263. doi:10.1002/ana.25516 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Samardzija, G., Stevovic, T. K., Djuricic, S., Djokic, D., Djurisic, M., Ciric, D., Martinovic, T., Bumbasirevic, V., & Vujic, D. (2016). Aggressive human neuroblastomas show a massive increase in the numbers of autophagic vacuoles and damaged mitochondria. Ultrastructural Pathology, 40(5), 240-248. doi:10.1080/01913123.2016.1187689 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Shen, H.-M., & Codogno, P. (2011). Autophagic cell death: Loch Ness monster or endangered species? Autophagy, 7(5), 457-465. doi:10.4161/auto.7.5.14226 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Shimizu, S., Kanaseki, T., Mizushima, N., Mizuta, T., Arakawa-Kobayashi, S., Thompson, C. B., & Tsujimoto, Y. (2004). Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nature Cell Biology, 6(12), 1221-1228. doi:10.1038/ncb1192 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Silva, V. R., Neves, S. P., Santos, L. de S., Dias, R. B., & Bezerra, D. P. (2020). Challenges and therapeutic opportunities of autophagy in cancer therapy. Cancers, 12(11), 3461. doi:10.3390/cancers12113461 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Stasyk, O. V., Boretsky, Y. R., Gonchar, M. V., & Sibirny, A. A. (2014). Recombinant arginine-degrading enzymes in metabolic anticancer therapy and bioanalytics. Cell Biology International, 39(3), 246-252. doi:10.1002/cbin.10383 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Tian, Y., Qi, Y., Naeem, S., Gao, K., & Zhang, Y. (2020). Spermidine-induced autophagy regulates the survival of HeLa cells. Pakistan Journal of Zoology, 53(1), 239-244. doi:10.17582/journal.pjz/20191026041030 Crossref ● Google Scholar | ||||
| ||||
Vázquez, C. L., & Colombo, M. I. (2009). Assays to assess autophagy induction and fusion of autophagic vacuoles with a degradative compartment, using monodansylcadaverine (MDC) and DQ-BSA. Methods in Enzymology, 452, 85-95. doi:10.1016/s0076-6879(08)03606-9 Crossref ● Google Scholar | ||||
| ||||
Vistica, D. T., Skehan, P., Scudiero, D., Monks, A., Pittman, A., & Boyd, M. R. (1991). Tetrazolium-based assays for cellular viability: a critical examination of selected parameters affecting formazan production. Cancer Research, 51(10), 2515-2520. PubMed ● Google Scholar | ||||
| ||||
Wirawan, E., Vande Walle, L., Kersse, K., Cornelis, S., Claerhout, S., Vanoverberghe, I., Roelandt, R., De Rycke, R., Verspurten, J., Declercq, W., Agostinis, P., Vanden Berghe, T., Lippens, S., & Vandenabeele, P. (2010). Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria. Cell Death & Disease, 1(1), e18. doi:10.1038/cddis.2009.16 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Zhang, Y., Chung, S.-F., Tam, S.-Y., Leung, Y.-C., & Guan, X. (2021). Arginine deprivation as a strategy for cancer therapy: An insight into drug design and drug combination. Cancer Letters, 502, 58-70. doi:10.1016/j.canlet.2020.12.041 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Zou, S., Wang, X., Liu, P., Ke, C., & Xu, S. (2019). Arginine metabolism and deprivation in cancer therapy. Biomedicine & Pharmacotherapy, 118, 109210. doi:10.1016/j.biopha.2019.109210 Crossref ● PubMed ● Google Scholar |
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Y. V. Nishtuk, O. V. Stasyk, O. G. Stasyk
This work is licensed under a Creative Commons Attribution 4.0 International License.