SPERMIDINE ACTIVATES AUTHOPHAGY BUT DOES NOT RESCUE HUMAN NEUROBLASTOMA SH-SY5Y CELLS FROM EFFECTS OF ARGININE STARVATION

Y. V. Nishtuk, O. V. Stasyk, O. G. Stasyk


DOI: http://dx.doi.org/10.30970/sbi.1603.691

Abstract


Background. Neuroblastoma is a malignant tumor of the sympathetic nervous system common in early childhood. Autophagy is manifested in neuroblastoma cells at basal levels, but is often upregulated in cells of the aggressive neuroblastoma forms. The aim of the study was to evaluate effects of polyamine spermidine and deficiency of arginine on cell viability and autophagy regulation in cells of human neuroblastoma.
Materials and Methods. The human neuroblastoma SH-SY5Y cell line was an experimental model for the MTT assay of metabolic activity and cell viability upon exposure to different concentrations of spermidine in complete and arginine-free media. Assessing autophagy induction under arginine deficiency and spermidine treatment was carried out using fluorescence microscopy of neuroblastoma cells labeled with autophagic lysosomes-staining dye monodancylcadaverine.
Results and Discussion. It was found that arginine withdrawal abrogates proliferation of SH-SY5Y cells. In the presence of arginine precursor, citrulline, in arginine-free medium, SH-SY5Y cells could not proliferate and, therefore, are auxotrophic for arginine. SH-SY5Y cells were more sensitive to arginine starvation than to starvation for indispensible amino acids lysine or leucine. It was also revealed that spermidine at low concentrations of 5-10 μM did not affect SH-SY5Y cells viability irrespective of arginine availability. However, at 50 and higher concentrations this polyamine was highly cytotoxic in arginine-sufficient or deficient media. Analysis of autophagy induction by spermidine and under arginine starvation revealed an increase in the number of autophagic lysosomes in SH-SY5Y cells and additive effect of the two stimuli.
Conclusion. The described experiments revealed that arginine deprivation abrogated proliferation, led to a decrease in cell viability and induced autophagy in human neuroblastoma SH-SY5Y cells. Spermidine at the concentrations of 5-10 μM, while upinducing autophagy, did not improve survival of SH-SY5Y cells under arginine deprivation, whereas at a concentration above 50 μM spermidine had a strong cytotoxic effect. The main observation of this study is that autophagy can be readily manipulated in neuroblastoma cells by simultaneous deprivation for arginine and spermidine treatment.


Keywords


cancer, neuroblastoma, SH-SY5Y, autophagy, spermidine

Full Text:

PDF

References


Belounis, A., Nyalendo, C., Le Gall, R., Imbriglio, T. V., Mahma, M., Teira, P., Beaunoyer, M., Cournoyer, S., Haddad, E., Vassal, G., & Sartelet, H. (2016). Autophagy is associated with chemoresistance in neuroblastoma. BMC Cancer, 16(1). doi:10.1186/s12885-016-2906-9
CrossrefPubMedPMCGoogle Scholar

Boya, P., González-Polo, R.-A., Casares, N., Perfettini, J.-L., Dessen, P., Larochette, N., Métivier, D., Meley, D., Souquere, S., Yoshimori, T., Pierron, G., Codogno, P., & Kroemer, G. (2005). Inhibition of macroautophagy triggers apoptosis. Molecular and Cellular Biology, 25(3), 1025-1040. doi:10.1128/mcb.25.3.1025-1040.2005
CrossrefPubMedPMCGoogle Scholar

Chrisam, M., Pirozzi, M., Castagnaro, S., Blaauw, B., Polishchuck, R., Cecconi, F., Grumati, P., & Bonaldo, P. (2015). Reactivation of autophagy by spermidine ameliorates the myopathic defects of collagen VI-null mice. Autophagy, 11(12), 2142-2152. doi:10.1080/15548627.2015.1108508
CrossrefPubMedPMCGoogle Scholar

du Toit, A., De Wet, S., Hofmeyr, J.-H., Müller-Nedebock, K., & Loos, B. (2018). The precision control of autophagic flux and vesicle dynamics - a micropattern approach. Cells, 7(8), 94. doi:10.3390/cells7080094
CrossrefPubMedPMCGoogle Scholar

Eisenberg, T., Knauer, H., Schauer, A., Büttner, S., Ruckenstuhl, C., Carmona-Gutierrez, D., Ring, J., Schroeder, S., Magnes, C., Antonacci, L., Fussi, H., Deszcz, L., Hartl, R., Schraml, E., Criollo, A., Megalou, E., Weiskopf, D., Laun, P., Heeren, G., … Madeo, F. (2009). Induction of autophagy by spermidine promotes longevity. Nature Cell Biology, 11(11), 1305-1314. doi:10.1038/ncb1975
CrossrefPubMedGoogle Scholar

Evageliou, N. F., & Hogarty, M. D. (2009). Disrupting polyamine homeostasis as a therapeutic strategy for neuroblastoma. Clinical Cancer Research, 15(19), 5956-5961. doi:10.1158/1078-0432.CCR-08-3213
CrossrefPubMedPMCGoogle Scholar

Fazi, B., Bursch, W., Fimia, G. M., Nardacci, R., Piacentini, M., Di Sano, F., & Piredda, L. (2008). Fenretinide induces autophagic cell death in caspase-defective breast cancer cells. Autophagy, 4(4), 435-441. doi:10.4161/auto.5669
CrossrefPubMedGoogle Scholar

Ghosh, I., Sankhe, R., Mudgal, J., Arora, D., & Nampoothiri, M. (2020). Spermidine, an autophagy inducer, as a therapeutic strategy in neurological disorders. Neuropeptides, 83, 102083. doi:10.1016/j.npep.2020.102083
CrossrefPubMedGoogle Scholar

Huang, Y., Marton, L. J., Woster, P. M., & Casero, R. A. (2009). Polyamine analogues targeting epigenetic gene regulation. Essays in Biochemistry, 46, 95-110. doi:10.1042/bse0460007
CrossrefPubMedPMCGoogle Scholar

Huang, S., & Gu, S. (2020). Targeting autophagy in neuroblastoma. World Journal of Pediatric Surgery, 3(3), e000121. doi:10.1136/wjps-2020-000121
CrossrefGoogle Scholar

Klionsky, D. J., Abdalla, F. C., Abeliovich, H., Abraham, R. T., Acevedo-Arozena, A., Adeli, K., Agholme, L., Agnello, M., Agostinis, P., Aguirre-Ghiso, J. A., Ahn, H. J., Ait-Mohamed, O., Ait-Si-Ali, S., Akematsu, T., Akira, S., Al-Younes, H. M., Al-Zeer, M. A., Albert, M. L., Albin, R. L., … Zuckerbraun, B. (2012). Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 8(4), 445-544. doi:10.4161/auto.19496
CrossrefPubMedPMCGoogle Scholar

Lee, I. H., & Finkel, T. (2009). Regulation of autophagy by the p300 acetyltransferase. Journal of Biological Chemistry, 284(10), 6322-6328. doi:10.1074/jbc.m807135200
CrossrefPubMedPMCGoogle Scholar

Luo, S., & Rubinsztein, D. C. (2009). Apoptosis blocks Beclin 1-dependent autophagosome synthesis: an effect rescued by Bcl-xL. Cell Death & Differentiation, 17(2), 268-277. doi:10.1038/cdd.2009.121
CrossrefPubMedPMCGoogle Scholar

Mariño, G., Pietrocola, F., Eisenberg, T., Kong, Y., Malik, S. A., Andryushkova, A., Schroeder, S., Pendl, T., Harger, A., Niso-Santano, M., Zamzami, N., Scoazec, M., Durand, S., Enot, D. P., Fernández, Á. F., Martins, I., Kepp, O., Senovilla, L., Bauvy, C., … Kroemer, G. (2014). Regulation of autophagy by cytosolic acetyl-coenzyme A. Molecular Cell, 53(5), 710-725. doi:10.1016/j.molcel.2014.01.016
CrossrefPubMedGoogle Scholar

Mizushima, N., Yoshimori, T., & Levine, B. (2010). Methods in mammalian autophagy research. Cell, 140(3), 313-326. doi:10.1016/j.cell.2010.01.028
CrossrefPubMedPMCGoogle Scholar

Munafó, D. B., & Colombo, M. I. (2001). A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation. Journal of Cell Science, 114(20), 3619-3629. doi:10.1242/jcs.114.20.3619
CrossrefPubMedGoogle Scholar

Nakagawara, A., Li, Y., Izumi, H., Muramori, K., Inada, H., & Nishi, M. (2018). Neuroblastoma. Japanese Journal of Clinical Oncology, 48(3), 214-241. doi:10.1093/jjco/hyx176
CrossrefPubMed

Oral, O., Oz-Arslan, D., Itah, Z., Naghavi, A., Deveci, R., Karacali, S., & Gozuacik, D. (2012). Cleavage of Atg3 protein by caspase-8 regulates autophagy during receptor-activated cell death. Apoptosis, 17(8), 810-820. doi:10.1007/s10495-012-0735-0
CrossrefPubMedGoogle Scholar

Pavlyk, I., Rzhepetskyy, Y., Jagielski, A. K., Drozak, J., Wasik, A., Pereverzieva, G., Olchowik, M., Kunz-Schugart, L. A., Stasyk, O., & Redowicz, M. J. (2014). Arginine deprivation affects glioblastoma cell adhesion, invasiveness and actin cytoskeleton organization by impairment of β-actin arginylation. Amino Acids, 47(1), 199-212. doi:10.1007/s00726-014-1857-1
CrossrefPubMedPMCGoogle Scholar

Pietrocola, F., Lachkar, S., Enot, D. P., Niso-Santano, M., Bravo-San Pedro, J. M., Sica, V., Izzo, V., Maiuri, M. C., Madeo, F., Mariño, G., & Kroemer, G. (2014). Spermidine induces autophagy by inhibiting the acetyltransferase EP300. Cell Death & Differentiation, 22(3), 509-516. doi:1038/cdd.2014.215
CrossrefPubMedPMCGoogle Scholar

Ross, R. A., Spengler, B. A., & Biedler, J. L. (1983). Coordinate morphological and biochemical interconversion of human neuroblastoma cells. Journal of the National Cancer Institute, 71(4), 741-747.
PubMedGoogle Scholar

Saiki, S., Sasazawa, Y., Fujimaki, M., Kamagata, K., Kaga, N., Taka, H., Li, Y., Souma, S., Hatano, T., Imamichi, Y., Furuya, N., Mori, A., Oji, Y., Ueno, S., Nojiri, S., Miura, Y., Ueno, T., Funayama, M., Aoki, S., & Hattori, N. (2019). A metabolic profile of polyamines in parkinson disease: A promising biomarker. Annals of Neurology, 86(2), 251-263. doi:10.1002/ana.25516
CrossrefPubMedPMCGoogle Scholar

Samardzija, G., Stevovic, T. K., Djuricic, S., Djokic, D., Djurisic, M., Ciric, D., Martinovic, T., Bumbasirevic, V., & Vujic, D. (2016). Aggressive human neuroblastomas show a massive increase in the numbers of autophagic vacuoles and damaged mitochondria. Ultrastructural Pathology, 40(5), 240-248. doi:10.1080/01913123.2016.1187689
CrossrefPubMedGoogle Scholar

Shen, H.-M., & Codogno, P. (2011). Autophagic cell death: Loch Ness monster or endangered species? Autophagy, 7(5), 457-465. doi:10.4161/auto.7.5.14226
CrossrefPubMedGoogle Scholar

Shimizu, S., Kanaseki, T., Mizushima, N., Mizuta, T., Arakawa-Kobayashi, S., Thompson, C. B., & Tsujimoto, Y. (2004). Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nature Cell Biology, 6(12), 1221-1228. doi:10.1038/ncb1192
CrossrefPubMedGoogle Scholar

Silva, V. R., Neves, S. P., Santos, L. de S., Dias, R. B., & Bezerra, D. P. (2020). Challenges and therapeutic opportunities of autophagy in cancer therapy. Cancers, 12(11), 3461. doi:10.3390/cancers12113461
CrossrefPubMedPMCGoogle Scholar

Stasyk, O. V., Boretsky, Y. R., Gonchar, M. V., & Sibirny, A. A. (2014). Recombinant arginine-degrading enzymes in metabolic anticancer therapy and bioanalytics. Cell Biology International, 39(3), 246-252. doi:10.1002/cbin.10383
CrossrefPubMedGoogle Scholar

Tian, Y., Qi, Y., Naeem, S., Gao, K., & Zhang, Y. (2020). Spermidine-induced autophagy regulates the survival of HeLa cells. Pakistan Journal of Zoology, 53(1), 239-244. doi:10.17582/journal.pjz/20191026041030
CrossrefGoogle Scholar

Vázquez, C. L., & Colombo, M. I. (2009). Assays to assess autophagy induction and fusion of autophagic vacuoles with a degradative compartment, using monodansylcadaverine (MDC) and DQ-BSA. Methods in Enzymology, 452, 85-95. doi:10.1016/s0076-6879(08)03606-9
CrossrefGoogle Scholar

Vistica, D. T., Skehan, P., Scudiero, D., Monks, A., Pittman, A., & Boyd, M. R. (1991). Tetrazolium-based assays for cellular viability: a critical examination of selected parameters affecting formazan production. Cancer Research, 51(10), 2515-2520.
PubMedGoogle Scholar

Wirawan, E., Vande Walle, L., Kersse, K., Cornelis, S., Claerhout, S., Vanoverberghe, I., Roelandt, R., De Rycke, R., Verspurten, J., Declercq, W., Agostinis, P., Vanden Berghe, T., Lippens, S., & Vandenabeele, P. (2010). Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria. Cell Death & Disease, 1(1), e18. doi:10.1038/cddis.2009.16
CrossrefPubMedPMCGoogle Scholar

Zhang, Y., Chung, S.-F., Tam, S.-Y., Leung, Y.-C., & Guan, X. (2021). Arginine deprivation as a strategy for cancer therapy: An insight into drug design and drug combination. Cancer Letters, 502, 58-70. doi:10.1016/j.canlet.2020.12.041
CrossrefPubMedGoogle Scholar

Zou, S., Wang, X., Liu, P., Ke, C., & Xu, S. (2019). Arginine metabolism and deprivation in cancer therapy. Biomedicine & Pharmacotherapy, 118, 109210. doi:10.1016/j.biopha.2019.109210
CrossrefPubMedGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Y. V. Nishtuk, O. V. Stasyk, O. G. Stasyk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.