COMPARATIVE ANALYSIS OF THE MECHANOKINETICS OF CONTRACTILE ACTIVITY OF MYOMETRIUM SMOOTH MUSCLES UNDER CALIXARENE C-99 AND OUBAIN ACTION

O. V. Tsymbalyuk


DOI: http://dx.doi.org/10.30970/sbi.0801.339

Abstract


It is known that calix[4]arene with cipher C-99 selectively and with high affinity capable of inhibiting the Na+, K+-ATPase (compared with a known inhibitor of this enzyme – ouabain) of smooth muscle cells plasma membrane preparations. Therefore, the work was carried out comparative study of influence calixarene C-99 and ouabain (both compounds at a concentration of 10 µM) on spontaneous and caused (high-potassium solution, acetylcholine and oxytocin) contractions of the rat uterus longitudinal smooth muscles. Contractile activity studied tensometrically in isometric mode, analysis of the kinetic properties of contractions performed the calculation of the normalized maximal velocity of contraction (Vnс) and relaxation (Vnr) phases. Ouabain and calixarene C-99 unidirectional changed the spontaneous contractile activity, causing a significant increase in the amplitude and frequency of contractions. Both compounds are equally causing decrease in maximum force oxytocin-evocked (0.1 IU) contractions, also cau­sing acceleration the growth of force (this is reflected in the increasing parameter Vnc). Also calixarene C-99 and ouabain not change the maximum force of acetylcholine- (10 µM) and K+-induced (80 mM) contractions and do not affect the character of growth of contractile responses (Vnc parameter remains unchanged). The responsiveness of relaxation velocity for the actions ouabain and calixarene C-99 depend on the nature of stimulation: in the case of oxytocin-evocked contractions it decreased and for K+-induced contractions – remained unchanged. Thus, ouabain and calixarene C-99 unidirectional changed the mechanokinetical parameters of spontaneous, agonist- and depolarization-induced contractions of rat myometrium. These results suggest that the effect of calixarene C-99 on the rat uterus smooth muscles is similar to the action of ouabain and is caused by inhibition of plasma membrane sodium pump.


Keywords


smooth muscle, uterus, contraction, kinetical parameters, calixarene C-99, plasma membrane Na+, K+-ATPase

References


1. Лабинцева Р.Д., Слінченко Н.М., Векліч Т.О. та ін. порівняльне дослідження впливу каліксаренів на mg2+-залежні атр-гідролазні ферментативні системи гладеньком’язових клітин матки. Укр. біохім. журнал, 2007; 79 (3): 44–54.

2. Цимбалюк О.В., Костерін С.О., Кальченко В.І., Родік Р.В. механокінетичні параметри скоротливої активності гладеньких м’язів caecum щура за умов хронічної дії каліксарену с107 in vivo. Фізика живого, 2010; 18(1): 47–51.

3. Цимбалюк О.В., Костерін С.О., Кальченко В.І., Родік Р.В. Порівняльне вивчення в дослідах in vitro та in vivo впливу каліксарену С107 та уабаїну на Na+,K+-АТФ-азну активність в плазматичних мембранах гепатоцитів щурів. Укр. біохім. журнал, 2010; 82(4): 78–85.

4. Цимбалюк О.В., Онуфрийчук О.В., Векліч Т.О. та ін. Порівняльне дослідження впливу оуабаїну і каліксарен біс-гідроксиметилфос-фонової кислоти на активність Na+/K+-АТФази на міханокінетику процесу “скорочення-розслаблення” гладенького м’язу. Фізика живого, 2006; 14(1): 53–72.

5. Ausina Р., Savineau J.P., Hernandez J.S. et al. Effect of inhibition of the electrogenic Na+/K+ pump on the mechanical activity in the rat uterus. Fundam. Clin. Pharmacol, 1996; 10: 38-46.
https://doi.org/10.1111/j.1472-8206.1996.tb00148.x
PMid:8900499

6. Baldini L., Casnati A., Sansone F., Ungaro R. Calixarene-based multivalent ligands. Chem. Soc. Rev, 2007 Feb; 36(2): 254-66.
https://doi.org/10.1039/B603082N
PMid:17264928

7. Burdyga Th.V., Kosterin S.A. Kinetic analysis of smooth muscle relaxation. Gen. Physiol. Biophys, 1991; 10: 589-598.

8. Fluoroaluminates mimic muscarinic-and oxytocin-receptor-mediated generation of inositol phosphates and contraction in the intact guinea-pig myometrium.Role for a pertussis/cholera-toxin-insensitive G protein. Biochem. J, 1988; 255: 705-713.

9. Jacobs B.E., Liu Y., Pulina M.V. et al. Normal pregnancy: mechanisms underlying the paradox of a ouabain-resistant state with elevated endogenous ouabain, suppressed arterial sodium calcium exchange, and low blood pressure. Am. J. Physiol. Heart. Circ. Physiol, 2012; 302(6): H1317-H1329.
https://doi.org/10.1152/ajpheart.00532.2011
PMid:22245773 PMCid:PMC3311474

10. Matchkov V.V. Mechanisms of cellular synchronization in the vascular wall. Mechanisms of vasomotion. Dan. Med. Bull, 2010; 57(10): B4191.

11. Matchkov V.V., Gustafsson H., Rahman A. et al. Interaction Between Na+/K+-Pump and Na+/Ca2+-Exchanger Modulates Intercellular Communication. Circ. Res, 2007; 100: 1026-1035.
https://doi.org/10.1161/01.RES.0000262659.09293.56
PMid:17347477

12. Matthews E. K., Sutte M.C. Ouabain-induced changes in the contractile and electrical activity, potassium content, and response to drugs, of smooth muscle cells. Can. J. Physiol. Pharmacol, 1967; 45(509): 509-520.
https://doi.org/10.1139/y67-060
PMid:6035170

13. Koltsova S.V., Trushina Yu., Haloui M. et al. Ubiquitous [Na+]i/[K+]i-Sensitive Transcriptome in Mammalian Cells: Evidence for Ca2+i-Independent Excitation-Transcription Coupling. PLoS ONE 7(5): e38032.
https://doi.org/10.1371/journal.pone.0038032
PMid:22666440 PMCid:PMC3362528

14. Ortega A., Aleixandre A. Role of Na+/K+-ATPase in the high extracellular calcium-induced impairment of rabbit aorta contractile activity. Vascul. Pharmacol, 2004; 41(2): 75-81.
https://doi.org/10.1016/j.vph.2004.03.005
PMid:15196478

15. Padilha A.S., Salaices M., Vassallo D.V. et al. Hypertensive effects of the iv administration of picomoles of ouabain. Braz. J. Med. Biol. Res, 2011; 44(9): 933-938.
https://doi.org/10.1590/S0100-879X2011007500103
PMid:21956536

16. Parkington H.C., Tonta M.A., Davies N.K. et al. Hyperpolarization and slowing of the rate of contraction in human uterus in pregnancy by prostaglandins E2 and f2alpha: involvement of the Na+ pump. J. Physiol, 1999; 1, 514(Pt 1): 229-243.
https://doi.org/10.1111/j.1469-7793.1999.229af.x
PMid:9831729 PMCid:PMC2269046

17. Perret F., Coleman A.W. Biochemistry of anionic calix[n]arenes Chem. Commun. (Camb), 2011; 14; 47(26): 7303-19.
https://doi.org/10.1039/c1cc11541c
PMid:21552631

18. Phillippe M., Chien E.K. Intracellular signaling and phasic myometrial contractions. J. Soc. Gynecol. Investig, 1998; 5(4): 169-177.
https://doi.org/10.1016/S1071-5576(98)00005-7

19. Quinn K., Guibert С., Beech D.J. Sodium-potassium-ATPase electrogenicity in cerebral precapillary arterioles. Am. J. Physiol. Heart. Circ. Physiol, 2000; 279: H351-H360.
https://doi.org/10.1152/ajpheart.2000.279.1.H351
PMid:10899075

20. Schoner W., Scheiner-Bobis G. Endogenous and exogenous cardiac glycosides: their roles in hypertension, salt metabolism, and cell growth. Am. J. Physiol. Cell. Physiol, 2007; 293: C509-C536.
https://doi.org/10.1152/ajpcell.00098.2007
PMid:17494630

21. Schoner W., Scheiner-Bobis G. Role of endogenous cardiotonic steroids in sodium homeostasis. Nephrol. Dial. Transplant, 2008; 23: 2723-2729.
https://doi.org/10.1093/ndt/gfn325
PMid:18556748

22. Suhail M. Na+,K+-ATPase: Ubiquitous Multifunctional Transmembrane Protein and its Relevance to Various Pathophysiological Conditions. Clin. Med. Res, 2010; 2(1): 1-17.
https://doi.org/10.4021/jocmr2010.02.263w

23. Veklich T., Shkrabak O., Kosterin S. A comparative study of influence of the calixarenes on the activity Na+,K+-ATPase and Mg2+-АТРase in smooth muscle sarcolemma. Annales Universitatis Mariae Curie-Sclodowska, 2008; XXI, 1(45): 253-255.
https://doi.org/10.2478/v10080-008-0045-6


Refbacks

  • There are currently no refbacks.


Copyright (c) 2014 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.