SULFUR REDUCING ACTIVITY OF DESULFUROMONAS SP. YSD S-3 BACTERIA UNDER CULTIVATION AT DIFFERENT CONDITIONS

O. Chayka, T. Peretjatko, S. Gudz


DOI: http://dx.doi.org/10.30970/sbi.1101.507

Abstract


The sulfur reducing activity of sulfur-reducing bacteria Desulfuromonas sp. YSD S-3 for the influence of aeration, pH and temperature was studied. The highest sulfur redu­cing activity was found in culture fluid (48.4 µM H2S / (min×mg of protein), in sedimentary fraction it was 40 times lower, and in the soluble fraction after destruction of cells sulfur reducing activity it was not detected. Probably, the sulfur reductase of Desulfuromonas sp. YSD S-3 is localized in the cytoplasmic membrane and the reduction of sulfur is performed outside the cell. The sulfur reductase of Desulfuromonas sp. YSD S-3 is sensitive to oxygen and is an inducible enzyme. Maximal sulfur reducing activity occurs on the 5–7 day during the stationary phase of growth and reaches 47.4 µM H2S / (min×mg of protein). 30 °C and pH 7.5 are optimal conditions for sulfur reducing acti­vity of Desul­furomonas sp. YSD S-3. Michaelis constant (Km) of sulfur reductase is 0.22±0.01 mM, maximal velocity (Vmax) – 18.2±0.8 µM of H2S / (min×mg).


Keywords


sulfur-reducing bacteria, sulfur reducing activity, sulfur reductase, hydrogenase, hydrogen sulfide

References


1. Вarton L.L, Fardeau M.L., Fauque G.D. Hydrogen sulfide: a toxic gas produced by dissimilatory sulfate and sulfur reduction and consumed by microbial oxidation. Met. Ions Life Sci, 2014; 14: 237-77.
https://doi.org/10.1007/978-94-017-9269-1_10
PMid:25416397

2. Dirmeire R., Keller M., Frey G. et al. Purifcation and properties of an extremely thermostable membrane-bound sulfur-reducing complex from the hyperthermophilic Pyrodictium abyssi. Eur. J. Biochem, 1998; 252: 486-491.
https://doi.org/10.1046/j.1432-1327.1998.2520486.x
PMid:9546664

3. Сhayka O., Peretjatko T., Gudz S. Sulfur reducing bacteria of Yazivske sulfur deposit. Sci. Bull. Uzhgorod Univ. (Ser. Biol), 2010; 28: 52-55. (In Ukrainian)

4. Gudz S., Hnatush S., Moroz O. et al. Certificate of deposit strain of bacteria Desulfuromonas acetoxidans Ya-2006. Іn the Depositary Institute of Microbiology and Virology Danylo Zabolotny of NAS of Ukraine with the provision of registration number IM B-7384 of 10 April 2013 (In Ukrainian)

5. Guiral M., Tron T., Aubert C. et al. Membrane-bound multienzyme, hydrogen-oxidizing, and sulfur-reducing complex from the hyperthermophilic bacterium Aquifex aeolicus. J. Biol. Chem, 2005; 280 (51): 42004-42015.
https://doi.org/10.1074/jbc.M508034200
PMid:16236714

6. Gumeczkyj R.Ya., Palyanycya B.M., Chaban M.E. Mathematical methods in biology: theoretical knowledge, practical programmable, computer tests. Lviv, 2004. 111 p. (In Ukrainian)

7. Hedderich R., Klimmek O., Kroger A. et al. Anaerobic respiration with elemental sulfur and with disulfides. FEMS Microbiol. Reviews, 1999; 22: 353-381.
https://doi.org/10.1111/j.1574-6976.1998.tb00376.x

8. Kalinin F.L., Popov V.P, Zhidkov V.A. Handbook of biochemistry. Kyiv: Naukova Dumka, 1971. 1012 p. (In Russian)

9. Kletzin A., Urich T., Muller F. at al. Dissimilatory oxidation and reduction of elemental sulfur in thermophilic Archaea. J. Bioenerg. and Biomem, 2004; 36(1): 77-91.
https://doi.org/10.1023/B:JOBB.0000019600.36757.8c

10. Laska S., Lottspeich F., Kletzin A. Membrane-bound hydrogenase and sulfur reductase of the hyperthermophilic and acidophilic archaeon Acidianus ambivalens. Microbiology, 2003; 149: 2357-2371.
https://doi.org/10.1099/mic.0.26455-0
PMid:12949162

11. Lin Y.J., Dancea F., Löhr F., Klimmek O. et al. Solution structure of the 30 kDa polysulfide-sulfur transferase homodimer from Wolinella succinogenes. Biochemistry, 2004; 43(6): 1418-24.
https://doi.org/10.1021/bi0356597
PMid:14769017

12. Lowry O., Rosebrough N., Farr A. et al. Protein determination with the Folin phenol reagent. J. Biol. Chem, 1951; 193: 265-275.

13. Ma K., Adams W. Sulfide dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus: a new multifunctional enzyme involved in the reduction of elemental sulfur. J. Bacteriol, 1994; 176 (21): 6509-6517.
https://doi.org/10.1128/jb.176.21.6509-6517.1994
PMid:7961401 PMCid:PMC197004

14. Postgate J. The sulfate-reducing bacteria. 2nd ed. Cambridge: Cambridge University, 1984. 199 p.

15. Rabus R., Hansen T., Widdel F. Dissimilatory sulfate- and sulfur-reducing Prokaryotes: an evolving electronic resource for the microbiological community. 3rd ed. In: Dworkin M., Falkow S., Rosenberg E. et al. New York: Springer-Verlag, 2000. Online.

16. Schut G., Bridger S., Adams W. Insights into the metabolism of elemental sulfur by the hyperthermophilic archaeon Pyrococcus furiosus: characterization of a coenzyme A-dependent NAD(P)H sulfur oxidoreductase. J. Bacteriol, 2007; 189(12): 4431-4441.
https://doi.org/10.1128/JB.00031-07
PMid:17449625 PMCid:PMC1913366

17. Sugio D., Oda C., Matsumoto K. et al. Purification and characterization of sulfur reductase from a moderately thermophilic bacterial strain, TI-1, that oxidizes iron. Biosci. Biotechnol. Biochem, 1998; 62(4): 705-709.
https://doi.org/10.1271/bbb.62.705

18. Sugyxama M. Reagent composition for measuring hydrogen sulfide and method for measuring hydrogen sulfide. United States Patent N 6340596, 2002.

19. Widdel F., Hansen T. The Dissimilatory sulfate- and sulfur-reducing bacteria. The prokaryotes. 2nd ed. In: Balows A. New York: Springer-Verlag, 1992: 583-624.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Studia biologica