EFFECT OF A NOVEL THIAZOLE DERIVATIVE AND ITS COMPLEX WITH A POLYMERIC CARRIERS ON THE ACTIVITY OF ANTIOXIDANT ENZYMES IN MURINE LYMPHOMA СELLS
DOI: http://dx.doi.org/10.30970/sbi.1504.673
Abstract
Background. Previous studies have shown a pronounced cytotoxic effect of thiazole derivatives in combination with polymeric carriers on tumor cells. At the same time, the derivatives were not cytotoxic against non-cancerous cells in vitro. It was shown that thiazole derivatives at concentrations of 10 and 50 μM affected the prooxidant and antioxidant systems of lymphoma cells in vitro. The aim of this work was to study the effect of the complex of thiazole derivative N-(5-benzyl-1,3-thiazol-2-yl)-3,5-dimethyl-1-benzofuran-2-carboxamide (BF1) in combination with polymeric carriers poly(VEP-co-GMA)-graft-mPEG (Th1), poly(PEGMA) (Th3) and poly(PEGMA-co-DMM) (Th5) on the antioxidant defense system of the NK/Ly cell in vitro.
Materials and Methods. The experiments were performed on white wild-type male mice with grafted NK/Ly lymphoma. Tumor cells were inoculated into mice intraperitoneally. Ascites was drained from the abdominal cavity of anaesthetized mice with a sterile syringe on the 7th-10th day after inoculation. Investigated compounds BF1, BF1 + Th1 (Th2, Th12), BF1 + Th3 (Th4, Th14), BF1 + Th5 (Th6, Th16) at a final concentration of 10 μM were added to the lymphoma samples and incubated for 10 min; the activity of antioxidant enzymes was determined according to the techniques described previously.
Results. It was found that all the studied complexes based on thiazole derivative BF1 and polymeric carriers poly (VEP-co-GMA)-graft-mPEG (Th2, Th12), poly (PEGMA) (Th4, Th14) and poly (PEGMA-co-DMM) (Th6, Th16) at a concentration of 10 μm increased the activity of SOD, while the activity of CAT and GPX were reduced compared to control. Complexes Th2, Th12 and Th4 increased the significance of the BF1 influence on lymphoma cells from P <0.05 to P <0.01. Pure polymeric carriers did not affect the level of the antioxidant defense system enzymes.
Conclusions. Thus, it was found that the polymeric carriers in combination with thiazole derivative BF1 increased the significance of thiazole derivative BF1 influence on the activity of the antioxidant defense system of lymphoma cells, while pure polymeric carriers did not affect the activity of SOD, CAT or GPX. The results of this work can be used for further studies of complexes of thiazole derivative and PEG-containing polymeric carriers as potential antitumor drugs.
Keywords
Full Text:
PDFReferences
Alimoradi, H., Greish, K., Barzegar-Fallah, A., ALshaibani, L., & Pittalà, V. (2018). Nitric oxide-releasing nanoparticles improve doxorubicin anticancer activity. International Journal of Nanomedicine, Volume 13, 7771-7787. doi:10.2147/ijn.s187089 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Amreddy, N., Babu, A., Muralidharan, R., Panneerselvam, J., Srivastava, A., Ahmed, R., Mehta, M., Munshi, A., & Ramesh, R. (2018). Recent advances in nanoparticle-based cancer drug and gene delivery. Advances in Cancer Research, 115-170. doi:10.1016/bs.acr.2017.11.003 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Dadwal, A., Baldi, A., & Kumar Narang, R. (2018). Nanoparticles as carriers for drug delivery in cancer. Artificial Cells, Nanomedicine, and Biotechnology, 46(sup2), 295-305. doi:10.1080/21691401.2018.1457039 Crossref ● PubMed ● Google Scholar | ||||
| ||||
De Santana, T. I., Barbosa, M. de O., Gomes, P. A. T. de M., da Cruz, A. C. N., da Silva, T. G., & Leite, A. C. L. (2018). Synthesis, anticancer activity and mechanism of action of new thiazole derivatives. European Journal of Medicinal Chemistry, 144, 874-886. doi:10.1016/j.ejmech.2017.12.040 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Finiuk, N. S., Hreniuh, V. P., Ostapiuk, Y. V., Matiychuk, V. S., Frolov, D. A., Obushak, M. D., Stoika R. S., & Babsky, A. M. (2017). Antineoplastic activity of novel thiazole derivatives. Biopolymers and Cell, 33(2), 135-146. doi:10.7124/bc.00094b Crossref ● Google Scholar | ||||
| ||||
Finiuk, N. S., Popovych, M. V., Shalai, Y. R., Mandzynets', S. M., Hreniuh, V. P., Ostapiuk, Y. V., Obushak, M., Mitina, N. O., Zaichenko, O. S., Stoika, R. S., & Babsky, A. M. (2021). Antineoplastic activity in vitro of 2-amino-5-benzylthiasol derivative in the complex with nanoscale polymeric carriers. Cytology and Genetics, 55(1), 19-27. doi:10.3103/s0095452721010084 Crossref ● Google Scholar | ||||
| ||||
Knop, K., Hoogenboom, R., Fischer, D., & Schubert, U. S. (2010). Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angewandte Chemie International Edition, 49(36), 6288-6308. doi:10.1002/anie.200902672 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Korolyuk, М. A., Ivanova, L. I., Mayorova, I. H., & Tokaryev, V. Ye. (1998). Metod opredeleniya aktivnosti katalazy [A method of determining catalase activity]. Laboratornoe Delo, 1, 16-19. [In Russian] PubMed ● Google Scholar | ||||
| ||||
Kostyuk, V. A., Potapovich, A., I., & Kovaleva, Zn. V. (1990). Prostoy i chuvstvitelnyy metod opredeleniya aktivnosti superoksiddismutazy, osnovannyy na reaktsii okisleniya kvertsetina [A simple and sensitive method of determination of superoxide dismutase activity based on the reaction of quercetin oxidation]. Voprosy Meditsinskoi Khimii, 36(2), 88-91. [In Russian] PubMed ● Google Scholar | ||||
| ||||
Lee, J.-M., Yoon, T.-J., & Cho, Y.-S. (2013). Recent developments in nanoparticle-based siRNA delivery for cancer therapy. BioMed Research International, 2013, 1-10. doi:10.1155/2013/782041 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Lowry, O., Rosebrough, N., Farr, A. L., & Randall, R. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265-275. doi:10.1016/s0021-9258(19)52451-6 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Mitina, N. Y., Riabtseva, A. O., Garamus, V. M., Lesyk, R. B., Volyanyuk, K. A., Izhyk, O. M., & Zaichenko, O. S. (2020). Morphology of the micelles formed by a comb-like PEG-containing copolymer loaded with antitumor substances with different water solubilities. Ukrainian Journal of Physics, 65(8), 670. doi:10.15407/ujpe65.8.670 Crossref ● Google Scholar | ||||
| ||||
Moin, V. M. (1986). Prostoĭ i spetsificheskiĭ metod opredeleniia aktivnosti glutationperoksidazy v éritrotsitakh [A simple and specific method for determining glutathione peroxidase activity in erythrocytes]. Laboratornoe Delo, (12), 724-727. [In Russian] PubMed ● Google Scholar | ||||
| ||||
Perillo, B., Di Donato, M., Pezone, A., Di Zazzo, E., Giovannelli, P., Galasso, G., Castoria, G., & Migliaccio, A. (2020). ROS in cancer therapy: the bright side of the moon. Experimental & Molecular Medicine, 52(2), 192-203. doi:10.1038/s12276-020-0384-2 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Popovych, M. V., Shalai, Y. R., Hreniukh, V. P., Kulachkovskyy, O. R., Mandzynets, S. M., Mitina, N.O., Zaichenko, O. S., & Babsky, A, M. (2021). Effect of thiazole derivative complexed with nanoscale polymeric carriers on cellular ultrastructure of murine lymphoma cells in vivo. Studia Biologica, 15(2), 15-24. doi:10.30970/sbi.1502.653 Crossref ● Google Scholar | ||||
| ||||
Shalai, Y. R., Popovych, M. V., Kulachkovskyy, O. R., Hreniukh, V. P., Mandzynets, S. M., Finiuk, N. S., & Babsky, A. M. (2019). Effect of novel 2-amino-5-benzylthiazole derivative on cellular ultrastructure and activity of antioxidant system in murine lymphoma cells. Studia Biologica, 13(1), 51-60. doi:10.30970/sbi.1301.591 Crossref ● Google Scholar | ||||
| ||||
Shalai, Ya. R., Mandzynets, S. M., Grenyukh, V. P., Finiuk, N. S., & Babsky, A. M. (2018). Free-radical processes in NK/Ly lymphoma cells and hepatocytes under the effect of thiazole derivative. Bulletin of Problems Biology and Medicine, 1.2(143), 234. doi:10.29254/2077-4214-2018-1-2-143-234-238 Crossref | ||||
| ||||
Snezhkina, A. V., Kudryavtseva, A. V., Kardymon, O. L., Savvateeva, M. V., Melnikova, N. V., Krasnov, G. S., & Dmitriev, A. A. (2019). ROS generation and antioxidant defense systems in normal and malignant cells. Oxidative Medicine and Cellular Longevity, 2019, 1-17. doi:10.1155/2019/6175804 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Sutradhar, K. B., & Amin, M. L. (2014). Nanotechnology in cancer drug delivery and selective targeting. ISRN Nanotechnology, 2014, 1-12. doi:10.1155/2014/939378 Crossref ● Google Scholar | ||||
| ||||
Wang, H., Agarwal, P., Zhao, G., Ji, G., Jewell, C. M., Fisher, J. P., Lu, X., & He, X. (2018). Overcoming ovarian cancer drug resistance with a cold responsive nanomaterial. ACS Central Science, 4(5), 567-581. doi:10.1021/acscentsci.8b00050 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Wang, L., Du, J., Zhou, Y., & Wang, Y. (2017). Safety of nanosuspensions in drug delivery. Nanomedicine: Nanotechnology, Biology and Medicine, 13(2), 455-469. doi:10.1016/j.nano.2016.08.007 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Zhao, M.-D., Li, J.-Q., Chen, F.-Y., Dong, W., Wen, L.-J., Fei, W.-D., Zhang, X., Yang, P-L., Zhang, X-M., & Zheng, C.-H. (2019). Co-delivery of curcumin and paclitaxel by "core-shell" targeting amphiphilic copolymer to reverse resistance in the treatment of ovarian cancer. International Journal of Nanomedicine, Volume 14, 9453-9467. doi:10.2147/ijn.s224579 Crossref ● PubMed ● PMC ● Google Scholar |
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 M. V. Popovych, Ya. R. Shalai, S. M. Mandzynets, N. E. Mitina, O. S. Zaichenko, A. M. Babsky
This work is licensed under a Creative Commons Attribution 4.0 International License.