EFFECT OF A NOVEL THIAZOLE DERIVATIVE AND ITS COMPLEX WITH A POLYMERIC CARRIERS ON THE ACTIVITY OF ANTIOXIDANT ENZYMES IN MURINE LYMPHOMA СELLS

M. V. Popovych, Ya. R. Shalai, S. M. Mandzynets, N. E. Mitina, O. S. Zaichenko, A. M. Babsky


DOI: http://dx.doi.org/10.30970/sbi.1504.673

Abstract


Background. Previous studies have shown a pronounced cytotoxic effect of thiazole derivatives in combination with polymeric carriers on tumor cells. At the same time, the derivatives were not cytotoxic against non-cancerous cells in vitro. It was shown that thiazole derivatives at concentrations of 10 and 50 μM affected the prooxidant and antioxidant systems of lymphoma cells in vitro. The aim of this work was to study the effect of the complex of thiazole derivative N-(5-benzyl-1,3-thiazol-2-yl)-3,5-dimethyl-1-benzofuran-2-carboxamide (BF1) in combination with polymeric carriers poly(VEP-co-GMA)-graft-mPEG (Th1), poly(PEGMA) (Th3) and poly(PEGMA-co-DMM) (Th5) on the antioxidant defense system of the NK/Ly cell in vitro.
Materials and Methods. The experiments were performed on white wild-type male mice with grafted NK/Ly lymphoma. Tumor cells were inoculated into mice intraperitoneally. Ascites was drained from the abdominal cavity of anaesthetized mice with a sterile syringe on the 7th-10th day after inoculation. Investigated compounds BF1, BF1 + Th1 (Th2, Th12), BF1 + Th3 (Th4, Th14), BF1 + Th5 (Th6, Th16) at a final concentration of 10 μM were added to the lymphoma samples and incubated for 10 min; the activity of antioxidant enzymes was determined according to the techniques described previously.
Results. It was found that all the studied complexes based on thiazole derivative BF1 and polymeric carriers poly (VEP-co-GMA)-graft-mPEG (Th2, Th12), poly (PEGMA) (Th4, Th14) and poly (PEGMA-co-DMM) (Th6, Th16) at a concentration of 10 μm increased the activity of SOD, while the activity of CAT and GPX were reduced compared to control. Complexes Th2, Th12 and Th4 increased the significance of the BF1 influence on lymphoma cells from P <0.05 to P <0.01. Pure polymeric carriers did not affect the level of the antioxidant defense system enzymes.
Conclusions. Thus, it was found that the polymeric carriers in combination with thiazole derivative BF1 increased the significance of thiazole derivative BF1 influence on the activity of the antioxidant defense system of lymphoma cells, while pure polymeric carriers did not affect the activity of SOD, CAT or GPX. The results of this work can be used for further studies of complexes of thiazole derivative and PEG-containing polymeric carriers as potential antitumor drugs.


Keywords


lymphoma, thiazole derivative, polymeric carriers, polyethyleneglycol, antioxidant defense system

Full Text:

PDF

References


Alimoradi, H., Greish, K., Barzegar-Fallah, A., ALshaibani, L., & Pittalà, V. (2018). Nitric oxide-releasing nanoparticles improve doxorubicin anticancer activity. International Journal of Nanomedicine, Volume 13, 7771-7787. doi:10.2147/ijn.s187089
CrossrefPubMedPMCGoogle Scholar

Amreddy, N., Babu, A., Muralidharan, R., Panneerselvam, J., Srivastava, A., Ahmed, R., Mehta, M., Munshi, A., & Ramesh, R. (2018). Recent advances in nanoparticle-based cancer drug and gene delivery. Advances in Cancer Research, 115-170. doi:10.1016/bs.acr.2017.11.003
CrossrefPubMedPMCGoogle Scholar

Dadwal, A., Baldi, A., & Kumar Narang, R. (2018). Nanoparticles as carriers for drug delivery in cancer. Artificial Cells, Nanomedicine, and Biotechnology, 46(sup2), 295-305. doi:10.1080/21691401.2018.1457039
CrossrefPubMedGoogle Scholar

De Santana, T. I., Barbosa, M. de O., Gomes, P. A. T. de M., da Cruz, A. C. N., da Silva, T. G., & Leite, A. C. L. (2018). Synthesis, anticancer activity and mechanism of action of new thiazole derivatives. European Journal of Medicinal Chemistry, 144, 874-886. doi:10.1016/j.ejmech.2017.12.040
CrossrefPubMedGoogle Scholar

Finiuk, N. S., Hreniuh, V. P., Ostapiuk, Y. V., Matiychuk, V. S., Frolov, D. A., Obushak, M. D., Stoika R. S., & Babsky, A. M. (2017). Antineoplastic activity of novel thiazole derivatives. Biopolymers and Cell, 33(2), 135-146. doi:10.7124/bc.00094b
CrossrefGoogle Scholar

Finiuk, N. S., Popovych, M. V., Shalai, Y. R., Mandzynets', S. M., Hreniuh, V. P., Ostapiuk, Y. V., Obushak, M., Mitina, N. O., Zaichenko, O. S., Stoika, R. S., & Babsky, A. M. (2021). Antineoplastic activity in vitro of 2-amino-5-benzylthiasol derivative in the complex with nanoscale polymeric carriers. Cytology and Genetics, 55(1), 19-27. doi:10.3103/s0095452721010084
CrossrefGoogle Scholar

Knop, K., Hoogenboom, R., Fischer, D., & Schubert, U. S. (2010). Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angewandte Chemie International Edition, 49(36), 6288-6308. doi:10.1002/anie.200902672
CrossrefPubMedGoogle Scholar

Korolyuk, М. A., Ivanova, L. I., Mayorova, I. H., & Tokaryev, V. Ye. (1998). Metod opredeleniya aktivnosti katalazy [A method of determining catalase activity]. Laboratornoe Delo, 1, 16-19. [In Russian]
PubMedGoogle Scholar

Kostyuk, V. A., Potapovich, A., I., & Kovaleva, Zn. V. (1990). Prostoy i chuvstvitelnyy metod opredeleniya aktivnosti superoksiddismutazy, osnovannyy na reaktsii okisleniya kvertsetina [A simple and sensitive method of determination of superoxide dismutase activity based on the reaction of quercetin oxidation]. Voprosy Meditsinskoi Khimii, 36(2), 88-91. [In Russian]
PubMedGoogle Scholar

Lee, J.-M., Yoon, T.-J., & Cho, Y.-S. (2013). Recent developments in nanoparticle-based siRNA delivery for cancer therapy. BioMed Research International, 2013, 1-10. doi:10.1155/2013/782041
CrossrefPubMedPMCGoogle Scholar

Lowry, O., Rosebrough, N., Farr, A. L., & Randall, R. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265-275. doi:10.1016/s0021-9258(19)52451-6
CrossrefPubMedGoogle Scholar

Mitina, N. Y., Riabtseva, A. O., Garamus, V. M., Lesyk, R. B., Volyanyuk, K. A., Izhyk, O. M., & Zaichenko, O. S. (2020). Morphology of the micelles formed by a comb-like PEG-containing copolymer loaded with antitumor substances with different water solubilities. Ukrainian Journal of Physics, 65(8), 670. doi:10.15407/ujpe65.8.670
CrossrefGoogle Scholar

Moin, V. M. (1986). Prostoĭ i spetsificheskiĭ metod opredeleniia aktivnosti glutationperoksidazy v éritrotsitakh [A simple and specific method for determining glutathione peroxidase activity in erythrocytes]. Laboratornoe Delo, (12), 724-727. [In Russian]
PubMedGoogle Scholar

Perillo, B., Di Donato, M., Pezone, A., Di Zazzo, E., Giovannelli, P., Galasso, G., Castoria, G., & Migliaccio, A. (2020). ROS in cancer therapy: the bright side of the moon. Experimental & Molecular Medicine, 52(2), 192-203. doi:10.1038/s12276-020-0384-2
CrossrefPubMedPMCGoogle Scholar

Popovych, M. V., Shalai, Y. R., Hreniukh, V. P., Kulachkovskyy, O. R., Mandzynets, S. M., Mitina, N.O., Zaichenko, O. S., & Babsky, A, M. (2021). Effect of thiazole derivative complexed with nanoscale polymeric carriers on cellular ultrastructure of murine lymphoma cells in vivo. Studia Biologica, 15(2), 15-24. doi:10.30970/sbi.1502.653
CrossrefGoogle Scholar

Shalai, Y. R., Popovych, M. V., Kulachkovskyy, O. R., Hreniukh, V. P., Mandzynets, S. M., Finiuk, N. S., & Babsky, A. M. (2019). Effect of novel 2-amino-5-benzylthiazole derivative on cellular ultrastructure and activity of antioxidant system in murine lymphoma cells. Studia Biologica, 13(1), 51-60. doi:10.30970/sbi.1301.591
CrossrefGoogle Scholar

Shalai, Ya. R., Mandzynets, S. M., Grenyukh, V. P., Finiuk, N. S., & Babsky, A. M. (2018). Free-radical processes in NK/Ly lymphoma cells and hepatocytes under the effect of thiazole derivative. Bulletin of Problems Biology and Medicine, 1.2(143), 234. doi:10.29254/2077-4214-2018-1-2-143-234-238
Crossref

Snezhkina, A. V., Kudryavtseva, A. V., Kardymon, O. L., Savvateeva, M. V., Melnikova, N. V., Krasnov, G. S., & Dmitriev, A. A. (2019). ROS generation and antioxidant defense systems in normal and malignant cells. Oxidative Medicine and Cellular Longevity, 2019, 1-17. doi:10.1155/2019/6175804
CrossrefPubMedPMCGoogle Scholar

Sutradhar, K. B., & Amin, M. L. (2014). Nanotechnology in cancer drug delivery and selective targeting. ISRN Nanotechnology, 2014, 1-12. doi:10.1155/2014/939378
CrossrefGoogle Scholar

Wang, H., Agarwal, P., Zhao, G., Ji, G., Jewell, C. M., Fisher, J. P., Lu, X., & He, X. (2018). Overcoming ovarian cancer drug resistance with a cold responsive nanomaterial. ACS Central Science, 4(5), 567-581. doi:10.1021/acscentsci.8b00050
CrossrefPubMedPMCGoogle Scholar

Wang, L., Du, J., Zhou, Y., & Wang, Y. (2017). Safety of nanosuspensions in drug delivery. Nanomedicine: Nanotechnology, Biology and Medicine, 13(2), 455-469. doi:10.1016/j.nano.2016.08.007
CrossrefPubMedGoogle Scholar

Zhao, M.-D., Li, J.-Q., Chen, F.-Y., Dong, W., Wen, L.-J., Fei, W.-D., Zhang, X., Yang, P-L., Zhang, X-M., & Zheng, C.-H. (2019). Co-delivery of curcumin and paclitaxel by "core-shell" targeting amphiphilic copolymer to reverse resistance in the treatment of ovarian cancer. International Journal of Nanomedicine, Volume 14, 9453-9467. doi:10.2147/ijn.s224579
CrossrefPubMedPMCGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 M. V. Popovych, Ya. R. Shalai, S. M. Mandzynets, N. E. Mitina, O. S. Zaichenko, A. M. Babsky

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.