PEROXIDASE ACTIVITY OF ERYTHROCYTES HEMOGLOBIN UNDER ACTION OF LOW-FREQUENCY VIBRATION

O. I. Dotsenko, G. V. Taradina, A. M. Mischenko


DOI: http://dx.doi.org/10.30970/sbi.1504.666

Abstract


Background. Hemoglobin is a hemoprotein which in the presence of oxidative equivalents, such as H2O2, can act as peroxidase with a very high oxidative potential. Hemoglobin oxidation is accompanied by generation of highly oxidized forms of iron and globin radicals that have high oxidative activity and are toxic to cells. In addition, peroxidase activity may indicate structural changes that occur in the hemoglobin molecule as a result of chemical modification.
Materials and Methods. Erythrocyte suspension was subjected to vibration for 3 h within the frequency range from 8 to 32 Hz with amplitudes of 0.5 ± 0.04 and 0.9 ± 0.08 mm. At certain intervals, hemoglobin peroxidase activity was determined together with the content of its ligand forms in the hemolysates of cells. Additionally, experiments were performed to investigate the mechanism and calculate the kinetic parameters of peroxidase reaction.
Results and Discussion. Experimental data on low-frequency vibrations effect on erythrocyte hemoglobin peroxidase activity were analyzed. The kinetics of the oxidation reaction of p-phenylenediamine by hemoglobin in erythrocytes was studied. It was found that peroxidase oxidation has a ping-pong mechanism. The kinetic parameters of the peroxidase reaction involving hemoglobin were determined. The change of kinetic parameters after two-hour exposure to the incubation medium and low-frequency vibration was studied. A possible mechanism of action of hemoglobin in oxidation reactions involving H2O2 was proposed.
Conclusion. Any effect that initiates the formation of methemoglobin leads to an increase in the peroxidase activity of hemoglobin due to the involvement of the latter in the pseudoperoxidase cycle and the formation of toxic reactive globin radicals. The high content of oxyhemoglobin in the cell, observed under vibrations within the frequency range of 16–32 Hz with an amplitude of 0.9 ± 0.08 mm, can prevent its oxidation and involvement in the pseudoperoxidase cycle.


Keywords


ligand forms of hemoglobin, enzymatic kinetics, kinetic constants, pseudoperoxidase cycle, heme, hypoxia, p-phenylenediamine

Full Text:

PDF

References


Bunkin, N. F., Ninham, B. W., Ignatiev, P. S., Kozlov, V. A., Shkirin, A. V., & Starosvetskij, A. V. (2011). Long-living nanobubbles of dissolved gas in aqueous solutions of salts and erythrocyte suspensions. Journal of Biophotonics, 4(3), 150-164. doi:10.1002/jbio.201000093
CrossrefPubMedGoogle Scholar

Bunkin, N. F., & Bunkin, F. V. (2016). Bubston structure of water and electrolyte water solutions. Uspekhi Fizicheskih Nauk, 186(9), 933-952. doi:10.3367/ufnr.2016.05.037796
CrossrefGoogle Scholar

Bunkin, N. F., Bunkin, N. F., Shkirin, A. V., Shkirin, A. V., Ninham, B.W., Chirikov, S. N., Chaikov, L. L., Penkov, N. V., Kozlov, V. A., Kozlov, V. A., & Gudkov S. V. (2020). Shaking-induced aggregation and flotation in immunoglobulin dispersions: differences between water and water-ethanol mixtures. ACS Omega, 5, 14689-14701. doi:10.1021/acsomega.0c01444
CrossrefPubMedPMCGoogle Scholar

Cooper, C. E., Silaghi-Dumitrescu, R., Rukengwa, M., Alayash, A. I., & Buehler P. W. (2008). Peroxidase activity of hemoglobin towards ascorbate and urate: A synergistic protective strategy against toxicity of Hemoglobin-Based Oxygen Carriers (HBOC). Biochimica et Biophysica Acta - Proteins and Proteomics, 1784(10), 1415-1420. doi:10.1016/j.bbapap.2008.03.019
CrossrefPubMedGoogle Scholar

Cooper, C. E., Schaer, D. J., Buehler, P. W., Wilson, M. T., Reeder, B. J., Silkstone, G., Svistunenko, D. A., Bulow, L., & Alayash, A. I. (2013). Haptoglobin binding stabilizes hemoglobin ferryl iron and the globin radical on tyrosine β145. Antioxidants & Redox Signaling, 18(17), 2264-2273. doi:10.1089/ars.2012.4547
CrossrefPubMedPMCGoogle Scholar

Dotsenko, O. I., & Troshchynskaya, Y. A. (2014). Role of AMP catabolism enzymes in the energetic status of erythrocytes under conditions of glucose depletion [Rol' fermentov katabolizma AMR v jenergeticheskom statuse jeritrocitov v uslovijah ih istoshhenija po gljukoze]. Biosystems Diversity, 22(1), 46-52. doi:10.15421/011406 [In Russian]
CrossrefGoogle Scholar

Dotsenko, O.I., Taradina, G. V., & Voronych, M. V. (2018). Enzyme protection systems of erythrocytes in conditions of ascorbate recirculation and oxidative loading. Regulatory Mechanisms in Biosystems, 9(4), 584-590. doi:10.15421/021887
CrossrefGoogle Scholar

Dotsenko, O. I., Mykutska, I. V., Taradina, G. V., & Boiarska, Z. O. (2020). Potential role of cytoplasmic protein binding to erythrocyte membrane in counteracting oxidative and metabolic stress. Regulatory Mechanisms in Biosystems, 11(3), 455-462. doi:10.15421/022070
CrossrefGoogle Scholar

Everse, J., Johnson, M. C., & Marini, M. A. (1994). [36] Peroxidative activities of hemoglobin and hemoglobin derivatives. Methods Enzymology, 231, 547-561. doi:10.1016/0076-6879(94)31038-6
CrossrefGoogle Scholar

Huo, S., Lei, X., He, D., Zhang, H., Yang, Z., Mu, W., Fang, K., Xue, D., Li H., Li, X., Jia, N., Zhu, H., Chen, C., & Yan, K. (2021). Ferrous hemoglobin and hemoglobin-based oxygen carriers acting as a peroxidase can inhibit oxidative damage to endothelial cells caused by hydrogen peroxide. Artificial Organs, 00, 1-11. doi:10.1111/aor.14009
CrossrefPubMedGoogle Scholar

Kosmachevskaya, O. V., & Topunov, A. F. (2018). Alternate and additional functions of erythrocyte hemoglobin. Biochemistry (Moscow), 83(12-13), 1575-1593. doi:10.1134/S0006297918120155
CrossrefPubMedGoogle Scholar

Liu, Y., Lv, H., Wang, B., Yang, D., & Zhang, Q. (2020). Modelling and analysis of haemoglobin catalytic reaction kinetic system. Mathematical and Computer Modelling of Dynamical Systems, 2020, 26(4), 306-321. doi:10.1080/13873954.2020.1771379
CrossrefGoogle Scholar

Paco, L., Galarneau, A., Drone, J., Fajula, F., Bailly, C., Pulvin, S., & Thomas, D. (2009). Catalase-like activity of bovine met-hemoglobin: Interaction with the pseudo-catalytic peroxidation of anthracene traces in aqueous medium. Biotechnology Journal, 4(10): 1460-1470. doi:10.1002/biot.200900100
CrossrefPubMedGoogle Scholar

Ratanasopa, K., Strader, M. B., Alayash, A. I., & Bulow, L. (2015). Dissection of the radical reactions linked to fetal hemoglobin reveals enhanced pseudoperoxidase activity. Frontiers in Physiology, 6, 39. doi:10.3389/fphys.2015.00039
CrossrefPubMedPMCGoogle Scholar

Reeder, B. J. (2010). The redox activity of hemoglobins: from physiologic functions to pathologic mechanisms. Antioxidants and Redox Signaling, 13(7), 1087-1123. doi:10.1089/ars.2009.2974
CrossrefPubMedGoogle Scholar

Reeder, B. J. (2017). Redox and peroxidase activities of the hemoglobin superfamily: relevance to health and disease. Antioxidants and Redox Signaling, 26(14), 763-776. doi:10.1089/ars.2016.6803
CrossrefPubMedGoogle Scholar

Shatalov, V. M. (2012). Mechanism of the biological impact of weak electromagnetic fields and the in vitro effects of blood degassing. Biophysics, 57(6), 808-813. doi:10.1134/S0006350912060152
CrossrefGoogle Scholar

Shatalov, V. M., Filippov, A. E., & Noga, I. V. (2012). Bubbles induced fluctuations of some properties of aqueous solutions. Biophysics, 57(4), 421-427. doi:10.1134/S0006350912040161
CrossrefGoogle Scholar

Svistunenko, D. A., Dunne, J., Fryer, M., Nicholls, P., Reeder, B. J., Wilson, M. T., Bigotti, M. G., Cutruzzolà ,F., & Cooper, C. E. (2002). Comparative study of tyrosine radicals in hemoglobin and myoglobins treated with hydrogen peroxide. Biophysical Journal, 83(5), 2845-2855. doi:10.1016/S0006-3495(02)75293-4
CrossrefGoogle Scholar

Uchida, T., Liu, S., Enari, M., Oshita, S., Yamazaki, K., & Gohara, K. (2016). Effect of NaCl on the lifetime of micro- and nanobubbles. Nanomaterials, 6(2), 1-10. doi:10.3390/nano6020031
CrossrefPubMedPMCGoogle Scholar

Vlasova, I. (2018). Peroxidase activity of human hemoproteins: keeping the fire under control. Molecules, 23(10), 2561. doi:10.3390/molecules23102561
CrossrefPubMedPMCGoogle Scholar

Widmer, C. C., Pereira, C.P., Gehrig, P., Vallelian, F., Schoedon, G., Buehler, P.W., & Schaer, D. J. (2010). Hemoglobin can attenuate hydrogen peroxide-induced oxidative stress by acting as an antioxidative peroxidase. Antioxidants and Redox Signaling, 12 (2), 185-198. doi:10.1089/ars.2009.2826
CrossrefPubMedGoogle Scholar

Witting, P. K., Mauk, A. G., & Lay, P. A. (2002). Role of tyrosine-103 in myoglobin peroxidase activity: kinetic and steady-state studies on the reaction of wild-type and variant recombinant human myoglobins with H2O2. Biochemistry, 41(38), 11495-11503. doi:10.1021/bi025835w
CrossrefPubMedGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 O. I. Dotsenko, G. V. Taradina, A. M. Mischenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.